
OmniRPC User’s Guide Version 2.0.1

http://www.omni.hpcc.jp/omnirpc/
<omnirpc@omni.hpcc.jp>

Yoshihiro Nakajima
High Performance Computing Laboratory, University of Tsukuba

Mitsuhisa Sato
High Performance Computing Laboratory, University of Tsukuba

OmniRPC User’s Guide Version 2.0.1: http://www.omni.hpcc.jp/omnirpc/ <omnirpc@omni.hpcc.jp>
by Yoshihiro Nakajima and Mitsuhisa Sato

Copyright © 2003, 2007 High Performance Computing System Laboratory, University of Tsukuba

This handbook itself is part of OmniRPC System and is therefore also licensed under the GNU General Public
License; see Copyright for more information.

Revision History

Revision 2.0.1 20 Dec 2007 Revised by: ynaka
New release

Table of Contents
1. Overview of OmniRPC System ..1
2. Installation..2

Requirements ...2
Compilation and Installation..2

Compilation and Installation form Source File ..2
Compilation and Installation with the Globus Toolkit library..3

Install Test ..3
stub test (worker program test) ...3
exec-test ..4
call-test ...4

3. Getting Started: Programming with OmniRPC...6
Simple example..6
Execution environment ..6
OmniRPC agent and remote executable programs ..6
Write remote executable program..7
Registration of remote executable program ...8
Client program ...8
Create hostfile.xml ...9
Execution of Cleint Program..9
Summary ..9

4. Parallel Programming with OmniRPC..11
Execution Environment..11
Parallel programming with asynchronous call ...11
Hostfile and Execution ...12
Parallel programming with OpenMP ...12

5. Use of shared memory multiprocessor (SMP) system..14
Setting for SMP..14
Setting of Maxjob...14
Execution of client progra..14

6. Execution in Globus Toolkit Environments...16
Execution Environment with Globus Toolkit...16
Preparation of Globus ..16
Hostfile for Globus...16
Execution of client program...17

7. Execution of ssh Environment ..18
Preparing for SSH ..18
Hostfile for SSH ...18
Setting for firewall: Using SSH’s port forwarding and MXIO option. ..19
Execution of client program...19
Setting of Login name..19

iii

8. Execution on Clusters..21
Setting of cluster environment ...21
Selection of job scheduler ..21
Use of built-in round-robin scheduler ..21
Cluster in private network ..22
Cluster outside firewall...23
Cluster inside firewall...23

9. Programming with OmniRpcHandle API...24
What’s OmniRpcHandle ..24
Programming with OmniRpcHandle ...24
Acquisition of host information. ..25

10. Automatic module initialization with OmniRpcModuleInit API..26
What’s auto module initialization ..26
Programming with OmniRpcModuleInit API..26

11. Direct Execution of Remote Program..30
The case of direct activation of remote executable program..30
Setting environment for remote nodes. ..30
API for direct execution of remote program ..30
Program execution ...31
The limitation of direct activation of remote executable programs. ..31

12. File Transfer in OmniRPC..33
File Transfer using Filename..33

Write Remote Executable Program ..33
Write Client Program ...34
Execution of Program...35

Setting of WorkingDirectory...35

13. Programming in FORTRAN ..36
A simple example in FORTRAN ...36
Create remote executable program...36
Client program in Fortran...37
An asynchronous call in FORTRAN..38

A. Description of hostfile ...39
Specifying the hostfile..39
How to describe..39
Details of Hostfile ..39

Host element...40
Agent element: (Optional) ..40
JobScheduler element: (Optional)...40
Registry element: (Optional)...41
WorkingPath element: (Optional) ...41
Description element: (Optional) ...41

TimeOut element: (Optional) ...41
Debug element: (Optional) ...41

DTD (Document Type Definition) of hostfile. ...41

iv

B. IDL (Interface Description Language)..43
IDL file and generation of remote executable programs..43
Example ...43
Details of IDL ..44

Module statement ...44
Define statement ...44
Globals statement ...45
Fortranformat statement ...45

Differences from Ninf IDL ..46
IDL grammar..46

C. Command Reference ..48
Command Reference..48

omrpc-register...48
omrpc-cc ...49
omrpc-fc ...50
omrpc-register...51

D. OmniRPC API index ..53
OmniRPC C API..53

OmniRpcInit ...53
OmniRpcFinalize..53
OmniRpcCall ..54
OmniRpcCallAsync..54
OmniRpcWait ...55
OmniRpcProbe ...56
OmniRpcWaitAll ..56
OmniRpcWaitAny ..57
OmniRpcCreateHandle...57
OmniRpcCallByHandle..58
OmniRpcCallAsyncByHandle ...58
OmniRpcDestroyHandle ..59
OmniRpcModuleInit...59
OmniRpcExecInit ...60
OmniRpcExecFinalize..61
OmniRpcExecOnHost ..61
OmniRpcExecCall ..62
OmniRpcExecTerminate ..62

OmniRPC FORTRAN API ..63
OMNIRPC_INIT..63
OMNIRPC_FINALIZE ..63
OMNIRPC_CALL ...64
OMNIRPC_CALL_ASYNC..65
OMNIRPC_WAIT..65
OMNIRPC_PROBE ...66
OMNIRPC_WAIT_ALL ..66
OMNIRPC_WAIT_ANY ...67
OMNIRPC_CREATE_HANDLE ..68
OMNIRPC_CALL_BY_HANDLE ...68

v

OMNIRPC_CALL_ASYNC_BY_HANDLE..69
OMNIRPC_DESTROY_HANDLE ...70
OMNIRPC_MODULE_INIT...70

E. FAQ...72

vi

Chapter 1. Overview of OmniRPC System
OmniRPC is a Grid RPC system which enables seamless parallel programming in cluster and Grid
environment.

OmniRPC’s characteristics are as follows.

• Supports typical master/worker grid applications such as parametric execution programs.

• OmniRPC provides an automatic-initializable remote module to send and store data to a remote
executable invoked in the remote host. Since it may accept several requests for subsequent calls by
keeping the connection alive, the data set by the initialization is re-used, resulting in efficient
execution by reducing the amount of communication.

• OmniRPC inherits its API from Ninf, and the programmer can use OpenMP for easy-to-use parallel
programming because the API is designed to be thread-safe. And OmniRPC supports the persistence
feature, which holds the remote executable’s state, and makes, programs more effective.

• Using the asynchronous call API, we can parallize a programs calling RPCs. Additionally, OmniRPC
is designed to be thread-safe for easy parallel programming. We can easily parallelize existing
sequential programs with direct based parallel programming such as OpenMP.

• The OmniRPC system supports local environments with rsh, grid environments with Globus, and
remote hosts with ssh. Furthermore, the user can use the same program over OmniRPC for both
clusters and grids because a typical grid resource is regarded simply as a cluster of clusters distributed
geo-graphically.

• For a cluster over a private network, an agent process running the server host functions as a proxy to
relay communications between the client and remote executables by multiplexing the communications
into one connection to the client. This feature allows a single client to use approximately one-thousand
remote computing hosts.

• Support of the job scheduler which considers the administrative policy of each computer resource.
Now OmniRPC supports PBS and SGE as job schedulers.

1

Chapter 2. Installation

Requirements
In order to successfully compile and use OmniRPC system, you need the following programs and
libraries which are available on most platforms as distribution packages and thereby can be installed
easily.

Required:

• gcc 2.95.4 (or compatible), available at \|\| (http://www.gnu.org)

• GNU make (or compatible), available at \|\| (http://www.gnu.org)

• Remote Shell (or compatible)

• flex 2.5.4,

Optional:

• OpenSSH SSH client (or compatible), avilable at \|\| (http://www.openssh.com)

• Java SDK 1.4.0 (or higher), available at \|\| (http://java.sun.com)

• Globus Toolkit 2.4 (or compatible), avilable at \|\| (http://globus.org)

OmniRPC system was tested with RedHat Linux 7.3 on Intel Xeon 2.4, 512MB RAM and Debian
GNU/Linux 2.0 (and higher version) on Intel compatible PCs.

Compilation and Installation

Compilation and Installation form Source File
In order to compile and install OmniRPC system, type the following in the base direcotry of the
OmniRPC distribution:

% ./configure

% make

(as root)
make install

As a result, the OmniRPC software is installed on the default directory ("/usr/local/omrpc"). If your
system’s make-command is gmake, type gmake instead of make.

If you want to change the install directory, you can specify another install directory.

2

Chapter 2. Installation

% ./configure --prefix /path/to/install

After installation, add "/path/to/install/bin" to the PATH environmental value.

Compilation and Installation with the Globus Toolkit library
To compile OmniRPC with Globus Toolkit, the globus-makefile-header program, which is attached to
Globus Toolkit, is needed. And, OmniRPC requires a library which supports pthread (such as
gcc32dbgpthr, gcc32pthr). Type the following to build OmniRPC system with Globus Toolkit library.

% ./configure --enable-globus

At this time, the Globus Toolkit path is set to the value of ${GLOBUS_LOCATION}, and the path to
Grid Packaging Toolkit(GPT) is set to the value of ${GPT_LOCATION}.

If you want to specify a path to Globus Toolkit or to GPT, you should type extra options.

% ./configure --enable-globus --with-globusDir=/path/to/globus --with-gtpDir=/path/to/gpt

Install Test
To test the installation, proceed as follows. Before testing, you should move "OmniRPC/test" directory.
And, in each test, you should move the directories s which are written by number. To obtain more
detailed information of the test program, especially if you encounter trouble with program testing, add
the command option "--debug", if some trouble on program testing.

stub test (worker program test)
To generate the stub program and test the "local-exec-test" program, move the subdirectory
(omrpc_stub_test) and type in "make" to compile the program.

% make

To test the stub program

% local-exec-test

Next, we should register the stub information. In registration, we have to create the directory
(${HOME}/.omrpc_registry).

3

Chapter 2. Installation

% mkdir $HOME/.omrpc_registry
% make reg_stub

exec-test
We test stub activation on a remote node. Especially, we test APIs (OmniRpcExecRemote,
OmniRpcExecCall) which enable remote execution. First, we input "make" to compile the program.

% make

To test the OmniRpcExecRemote API, <stub_directory> is a stub directory on which we compile
procedure 1. We must describe <stub_directory> as an absolute path.

% remote_exec_test1 <host> <stub_directory>

In a similar manner, test OmniRpcExecCall API.

% remote_exec_test2 <host> <stub_directory>

call-test
You should check Remote Procedure Call’s API(OmniRpcCall, OmniRpcCallByHandle). Create the host
file(hostfile.xml). You can get more detailed information about creating hostfile.xml from
hostfile.txt.

% cat ~/.omrpc_registry/hosts.xml
<OmniRpcConfig>
<Host name="localhost"/>
</OmniRpcConfig>

Check OmniRpcCall API.

% rcp-call-test1

Check OmniRpcCallByHandle API.

% rpc-call-test2 <host>

4

Chapter 2. Installation

Check OmniRpcModuleInit, OmniRpcCall API.

% rpc-call-test3

Check OmniRpcAsync, OmniRpcWaitAll API.

% rpc-async-test1

The install test is finished.

5

Chapter 3. Getting Started: Programming with
OmniRPC

Simple example
Let’s begin programming with OmniRPC using a simple example. In this case, we consider a program to
calculate from 1 to 10 using sine function.

#include <stdio.h>
#include <math.h>

int main(){
int i;
double x, res[10];
x = 0.0;
for(i = 0; i < 10; i++){
res[i] = sin(x);
x += 1.0;

}
for(i = 0; i < 10; i++)
printf("sin(%d)=%g\n",i,res[i]);

}

On this program, we calculate the sine in a remote node using OmniRPC. We label the computer node on
which the program makes the Remote Procedure Call (RPC) as the client host, and the computer node on
which procedures are executed by the RPC call as the remote host.

Execution environment
We assume the environment below as a simple explanation.

• Client host’s name is jones.

• Remote host’s name is dennis.

• From jones to dennis, we can execute "rsh" with no password authentication. In other words, jones is
registered to "/etc/host.equiv" or the user’s ".rhost" on the remote host.

• On both hosts, OmniRPC is installed to the default path("/usr/local/omrpc/").

In addition, OmniRPC does not need to share the file system in both hosts.

6

Chapter 3. Getting Started: Programming with OmniRPC

OmniRPC agent and remote executable programs
In OmniRPC, to activate a remote executable program on a remote node which is described in the
hostfile, the omrpc-agent is first activated when OmniRpcInit, which is an initialization API is called.

This agent is activated for each program, and runs during program execution. This agent is invoked by an
authentication method such as rsh, Globus GRAM, or ssh. And agent provides access to the module
information which was registered on the remote node and interface of the job scheduler, communication
multiplexing, and so on. If you want to know more details about these features, please see the section,
12. Hostfile Description.

In the upper figure, agent stands for OmniRPC-agent, rex stands for remote executable program. In this
example, the agent and rex are executed on the same host (dennis).

Write remote executable program
Here, we’ll write a program which calculates the sine on a remote host. We will define the interface of
sine function. We name the file which defines interfaces IDL(Interface Description Language) file. The
IDL is discussed in detail later section. For example, we can write the calc_sin.idl file as follows.

Module calc_sin;

Globals {
#include <math.h>;
}

Define calc_sin(double IN x, double OUT result[]){

*result = sin(x);
}

Module: We define the module name in the IDL file. In this example, we set this module name as
"calc_sin".

Define: Interfaces are defined by the "Define" directive. In this example, we use sin. Arguments are the
specified data type and whether the data is input or output. In OmniRPC, we cannot get the return value
of the function as a value of the function’s value like a original sin function. So, we get the value by
specifying arguments as "OUT", as shown in the example. In the part surrounded with {...}, we can write
a procedure which is executed on the remote host in C Language. This program calls the sine function
and "result", which is an "OUT" argument, returns the since value.

Globals: In the part assigned to "Globals", we can describe any C program which is necessary for
functions that are defined in the modules. In this example, the IDL includes files which are required to
call the "sin" function.

We can generate a remote executable program from the IDL file by using omrpc-cc, which is
OmniRPC’s remote executable module generator. So, let’s convert using this command. ("-lm" option is
to link math library.)

% omrpc-cc calc_sin.idl -lm

7

Chapter 3. Getting Started: Programming with OmniRPC

"calc_sin.rex" is generated by executing this program. This is the remote executable program.

By the way, the IDL can define multiple functions in a remote executable module. For Further details,
see 13. IDL file Description.

Registration of remote executable program
After making the remote executable program, you should register it. For registration, we use the
"omrpc-register" program.

% omrpc-register -register calc_sin.rex

This program creates the ".omrpc_register" directory in the user’s home directory and database, which
consists of the module name, function name and path to the remote executable program.

After completing the above procedure, setup on the remote host side is finished. We move next to the
setup on the client host side.

Client program
We rewrite the client program with OmniRpcCall.

#include <OmniRpc.h>;
#include <stdio.h>;
#include <math.h>;

int main(int argc,char *argv[]){
int i;
double x, res[10];

OmniRpcInit(&argc,&argv);

x = 0.0;
for(i = 0; i < 10; i++){

OmniRpcCall("calc_sin",x,; res[i]);
x += 1.0;

}
for(i = 0; i < 10; i++)

printf("sin(%d)=%g\n",i,res[i]);

OmniRpcFinalize();

}

8

Chapter 3. Getting Started: Programming with OmniRPC

First, we call OmniRpcInit() before we use the OmniRPC library. And, at end of this program, we call
OmniRpcFinalize(). Prototype definitions of these functions are described in OmniRpc.h, so the program
must include the "OmniRpc.h" header file.

We compile this program.

% omrpc-cc -o test.exe test.c

You can compile without omrpc-cc when you specify the directory of OmniRPC library.

% cc -I/usr/local/omrpc/include \

-o test.exe test.c -L/usr/local/omrpc/lib -lomrpc_client -lomrpc_io

By default, OmniRPC software is installed at /usr/local/omrpc. If you install the software in an other
directory, you should change /usr/loca/omrpc to the correct directory in which OmniRPC is installed.

Create hostfile.xml
In OmniRPC, usually we describe the execution environment in hostfile.xml with XML notation. In this
example case, we describe the execution environment as follows.

<?xml version="1.0" ?>;
<OmniRpcConfig>;

<Host name="prost" />;
</OmniRpcConfig>;

We write the above information in the hosts.xml file.

Execution of Cleint Program
The setup is finished. What we have to do next is to execute the program.

% test.exe --hostfile hosts.xml

This program searches for a remote function named sin on a remote host which is specified in the
hosts.xml file and activates the remote module. If the "--hostfile" option is omitted,
"--${HOME}/.omrpc-registry/hosts.xml" file is used.

Summary
Below list is a summary of the general procedure when using OmniRPC system.

1. Install OmniRPC on the client host and remote host.

9

Chapter 3. Getting Started: Programming with OmniRPC

2. On the remote host, create a remote executable program of the remote function and register it.

a. Create the IDL file which defines interfaces.

b. Generate a remote executable module from the IDL file with the "omrpc-cc" program.

c. Register with omrpc-register.

3. On the client host, create hosts.xml which describes the remote host.

4. Write the client program, and compile with omrpc-cc.

5. Execute the client program, specifying hosts.xml.

10

Chapter 4. Parallel Programming with OmniRPC
One aim of OmniRPC is to perform parallel programming with RPC. We execute the "calc_sin" function
in parallel on multiple remote hosts by showing one example of parallel programming, as in 3.
Programming with OmniRPC.

Execution Environment
We assume an execution environment like the following.

• The client host’s name is jones

• We use three hosts (dennis, alice, jack) as remote hosts.

• rsh can be executed from jones to the remote hosts without password authentication. In other words,
jones is registered at /etc/host.equiv or at the user’s .rhost on a remote host.

• OmniRPC is installed in the default path(/usr/local/omrpc/) on both hosts.

• And, calc_sin.rex which is the remote executable program of the "calc_sin" function, is registered
on each remote host, as in previous example.

Parallel programming with asynchronous call
We show an example of an asynchronous call with OmniRPC as follows.

#include <OmniRpc.h>;
#include <stdio.h>;
#include <math.h>;

int main(int argc,char *argv[]){
int i;
double x, res[10];
OmniRpcRequest req[10];

OmniRpcInit(&argc,&argv);

x = 0.0;
for(i = 0; i < 10; i++){

req[i] = OmniRpcCallAsync("calc_sin",x,&res[i]);
x += 1.0;

}
OmniRpcWaitAll(10,req);
for(i = 0; i < 10; i++)

printf("sin(%d)=%g\n",i,res[i]);

OmniRpcFinalize();

}

11

Chapter 4. Parallel Programming with OmniRPC

The OmniRpcCallAsync API activates the remote procedure call and returns without waiting for its call
termination. Its API returns an OmniRpcRequest value which corresponds to the remote procedure call
as a return value. We store its value in an array, and by using OmniRpcWaitAll API, the program waits
for termination of all RPC calls. For more details about this API, see 15. C API index.

Hostfile and Execution
Before program execution, you should prepare a hostfile.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="alice" />
<Host name="dennis" />
<Host name="jack" />

</OmniRpcConfig>

The rest of the procedure is the same the former example. The relationship between the agent and rex is
shown below.

Parallel programming with OpenMP
We can do parallel programming by calling OmniRpcCall on a multi-thread program with Omni
OpenMP (http://phase.hpcc.jp/Omni/), which is one of OpenMP compiler of an implementation using a
thread. We show an example as follows.

#include <OmniRpc.h>
#include <stdio.h>
#include <math.h>

int main(int argc,char *argv[]){
int i;
double x, res[10];
OmniRpcRequest req[10];

OmniRpcInit(&argc,&argv);

x = 0.0;
#pragma omp parallel for

for(i = 0; i <; 10; i++){
req[i] = OmniRpcCall("calc_sin",x,&res[i]);
x += 1.0;

}
for(i = 0; i < 10; i++)

printf("sin(%d)=%g\n",i,res[i]);

OmniRpcFinalize();

}

12

Chapter 4. Parallel Programming with OmniRPC

When you want to run this program, remember to set the OMP_NUM_THREADS environmental value,
which specifies the number of OpenMP threads, to a value more than the number of remote hosts.

13

Chapter 5. Use of shared memory
multiprocessor (SMP) system

The shared memory multiprocessor (SMP) system is a parallel computer which has multiple processors.
High-end systems and, recently, some PCs haves multiprocessors. On a remote host, a program will
show good performance when the program uses these CPUs at the same time.

Setting for SMP
In this example, we assume the environment below.

• Client host is jones.

• Remote host(apple) is an SMP system and has 4 processors.

• The same network and process is invoked by rsh.

Setting of Maxjob
Multiple remote execution programs can be executed at the same time on each processor in an SMP
system. In this case, we can execute a maximum of 4 programs. We describe hostfile for the SMP system
as follow.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="apple" arch="i386" os="linux">
<JobScheduler maxjob="4" />
</Host>

</OmniRpcConfig>

In this description, we set the maxjob attribute as "4" for the JobScheduler element. This shows that the
maximum number of remote executable programs executed on the remote host at the same time is 4.
Certainly, in a 4-way SMP system, we can run more than 4 jobs, but in practice 4 processes are executed
in parallel. Therefore effectiveness may not change.

In this case, the agent invoke multiple rex-es. The relationship is as follows.

Execution of client progra
The client program is executed in the same manner as the others, except for using the above host file.

% a.out --hostfile hosts.xml args

...

14

Chapter 5. Use of shared memory multiprocessor (SMP) system

Of course, to achieve good performance, we use a client program which uses the OmniRPC call in
parallel.

15

Chapter 6. Execution in Globus Toolkit
Environments

So far, we’ve mentioned local environments which can use rsh, but rsh cannot be used in wide-area
network environments. One of the solution for that is the Globus toolkit.

We explain the case of using Globus Toolkit, which is the de facto standard for constructing grid
environments. If you use Globus Toolkit, on a remote host, creating the remote executable program,
registering and programing is the same as previously stated. The only detail which is different is
describing the hostfile. If you don’t know much about the Globus Toolkit, please see Globus Alliance
(htttp://www.globus.org).

Execution Environment with Globus Toolkit
We assume an execution environment as follows.

• Client host is alice.hpcs.is.tukuba.ac.jp .

• Remote host is dennis.hpcc.jp. The Globus-gate-keeper must be running on the remote host.

• On the remote host, a non special privilege port (the port number is more than 1024) may be opened.

Warning
Please refer to the Globus manual for the method to limit the range of Globus
ports.

In the explanation below, we assume an environment setting on which a job can be submitted from the
client host to the remote host.

Preparation of Globus
First, initialize the proxy certificate when you use Globus Toolkit.

% grid-proxy-init

In this phase, you should input the pass phase, and create the proxy certificate. You can check whether
Globus can execute normally or not, by the example.

% globusrun -o -r dennis.hpcc.jp ’& (executable=/bin/date)’

If you cannot see the current time, you have to return to the setting of Globus. On other hand, if you can
see the current time, move to the next step.

16

Chapter 6. Execution in Globus Toolkit Environments

Hostfile for Globus
To use dennis.hpcc.jp, you should describe the information inn hosts.xml, and you can execute the
client program by its hostfile. When you use Globus, you should describe the following information.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="dennis.hpcc.jp" arch="i386" os="linux">
<Agent invoker="globus" />
</Host>

</OmniRpcConfig>

This description is for an agent using Globus to invoke a remote executable program. In this setting, the
relationship between the agent and rex is shown in the following.

Execution of client program

You can execute the client program in the same manner without using the hosts.xml file.

% a.out --hostfile hosts.xml args ...

17

Chapter 7. Execution of ssh Environment
SSH (secure shell) is a common method for using remote machines. In this section, we explain execution
of OmniRPC applications using ssh. In addition, like using Globus, create a remote executable module,
register a program, and to create program are almost the same. The only different details is the
description of hostfile (hosts.xml).

Preparing for SSH
In this example, the environment is described below.

• Client host is alice.hpcs.is.tukuba.ac.jp .

• Remote host is dennis.hpcc.jp.

• There is not a firewall between the remote host and client host. In other words, programs can
communicate without limitation on the non special privilege port.

We assume that we can use SSH here. That is, we assume that we can access with SSH from
alice.hpcs.is.tsukuba.ac.jp to dennis.hpcc.jp.

When using SSH, you should set up auto authentication with an ssh-agent. If you do not, you have to
type in the password at each remote host. If you want to know more detail, see man of "ssh-agent", In
this example, we outline the usage below.

1. Activate ssh-agent, and set the environment variable on your terminal.

% eval ‘ssh-agent‘

2. Register the pass phrase with ssh-add.

% ssh-add

type your pass phrase here.[passwd]
Identity added: /home/foo/.ssh/id_rsa (/home/foo/.ssh/id_rsa)
% ssh-add

With the above procedure, you should confirm whether auto authentication is running or not.

% ssh dennis.hpcc.jp

With the above command, you can login to remote hosts without typing the password.

Hostfile for SSH
To use dennis.hpcc.jp, you should describe hosts.xml, and execute the client program with this
hostfile. Write the hostfile for using ssh, as follows.

<?xml version="1.0" ?>

18

Chapter 7. Execution of ssh Environment

<OmniRpcConfig>
<Host name="dennis.hpcc.jp" arch="i386" os="linux">
<Agent invoker="ssh" />
</Host>

</OmniRpcConfig>

This description is for activating the agent with ssh. In this specification, the relationship between the
agent and rex is shown below.

Setting for firewall: Using SSH’s port forwarding and
MXIO option.

There will be some firewalls between remote hosts and the client host when the client host and the
remote hosts extend across administrations. When we use ssh for agent activation, programs
communicate with the client and agent, using ssh port forwarding . Using the ssh port forwarding
function, we can communicate between remote executable modules on the remote host and client
program. This is OmniRPC’s multiplex communication function. If you want to use this feature, specify
the "mxio" attribution in the agent.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="dennis.hpcc.jp" arch="i386" os="linux">
<Agent invoker="ssh" mxio="on" />
</Host>

</OmniRpcConfig>

The relationship of the agent and rex with this option is as follows. In this case, communication with rex
and the client program occurs by way of rex.

Execution of client program
You can execute in same manner without using hosts.xml.

% a.out --hostfile hosts.xml args...

Of course, to achieve good performance, we use a client program which uses the OmniRPC call in
parallel.

Setting of Login name
In addition, if the user name is different on client host and remote host, describe hostfile.xml as follows.

19

Chapter 7. Execution of ssh Environment

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="dennis.hpcc.jp" user="foo" arch="i386" os="linux">
<Agent invoker="ssh" mxio="on" />
</Host>

</OmniRpcConfig>

20

Chapter 8. Execution on Clusters
On grid environments, clusters which connects many PCs and workstations in a network is a typical
computation resources. In OmniRPC, we can treat a cluster as a remote host. We can run a remote
executable module on each node in the cluster and execute in parallel so that we can achieve good
performance.

Setting of cluster environment
When using clusters, we can access at least one computer in a cluster form the client host. We label this
computer as the cluster server host and label the computers in the cluster without a cluster server host as
the cluster node host.

• Client host is jones.tsukuba.ac.jp .

• Cluster server host is hpc-serv.hpcc.jp. So hpc1, hpc2 and hpc3 are connected to the cluster
server host as cluster node hosts.

• Both the cluster server host and cluster node hosts share the same file system.

• Client host can connect directly to the cluster server host and all of the cluster nodes. All port are not
limited.

The last item in the list assumes that the client host and cluster are in same network.

Selection of job scheduler
In OmniRPC, the omrpc-agent is invoked first on the cluster server host, and this agent activates remote
executable module on each cluster node host with the appropriate scheduler. We can use one of the
scheduler described below.

• Built-in round-robin scheduler (rr)

• Portable Batch System (PBS)

• SunGridEngine (SGE)

Use of built-in round-robin scheduler
OmniRPC’s built-in round-robin scheduler is a simple scheduler which is implemented in the agent. This
scheduler activates remote executable modules on cluster node hosts usign rsh.

To use this scheduler, we create a nodes file which specifies cluster node hosts on the registry
("$HOME/.omrpc-register") of the cluster server host. Below is the setting for this example.

hpc1
hpc2

21

Chapter 8. Execution on Clusters

hpc3

If you want to use ssh instead of rsh inside of a cluster, please add ssh to next of hostname like below file.

hpc1 ssh
hpc2 ssh
hpc3 ssh

On the client host side, we create this hostfile.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="hpc-serv.hpcc.jp" arch="i386" os="linux">
<JobScheduler type="rr" maxjob="4" />
</Host>

</OmniRpcConfig>

Set the type attribute in the job scheduler element to the round-robin scheduler "rr." The default value for
this attribute is "fork," which just creates the process on the same host. Our example applies to an SMP
system. The number of cluster node hosts is 4, so you should set maxjob equal to 4.

The relationship between the agent and rex with this option is as follows.

Cluster in private network
In the above example, the client host and cluster hosts are in same network. Also, the remote executable
programs which execute on the cluster node hosts are activated directly for the client host. In the case in
which the cluster and client host are in different networks, programs can communicate to the client host
from a cluster node host.

But, as the number of node hosts increases, so do the clusters connected to the local-address network. In
this situation, only the server host has a global IP address; the node hosts have local IP addresses. For
OmniRPC, the cluster node host must communicate with the client host, but in this situation the cluster
node host cannot communicate directly with the client host outside the cluster’s network.

In this situation, there are 2 ways to use the cluster.

1. Set NAT to communicate with outside networks from the cluster node hosts. Programs can connect
to anonymous ports on the client node from each cluster node. For the setting of NAT, please refer to
NAT documents.

2. By using the agent function of multiplex communication, the agent relays communications between
remote executable programs, which are executed on the cluster node host and client host.

We show an example hostile.xml which is based on the second way to use the cluster.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="hpc-serv.hpcc.jp" arch="i386" os="linux">
<Agent invoker="rsh" mxio="on" />
<JobScheduler type="rr" maxjob="4" />

22

Chapter 8. Execution on Clusters

</Host>
</OmniRpcConfig>

You should set the mxio attribute on the agent element with "on." In this case, because we assume that
the cluster server host and client host are in same network, we use "rsh." If you want to invoke the agent
with SSH, set "ssh". If you want to do this with the Globus gate keeper, use "globus."

Using this option, the relationship is shown in the figure below.

The agent relays communications between every rex which is executed on the remote node host and the
client.

Cluster outside firewall
You don’t have to prepare for this situation.

Cluster inside firewall
We now explain the case of using clusters from outside of firewalls. When there are firewall(s), it is
necessary at least to access with ssh to the cluster server host. If you can not use anonymous ports
without a port (#22) of ssh, you can use the function of multiplex communication with the agent. We
show the hostfile for this example.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="hpc-serv.hpcc.jp" arch="i386" os="linux">
<Agent invoker="ssh" mxio="on" />
<JobScheduler type="rr" maxjob="4" />
</Host>

</OmniRpcConfig>

Set the mxio attribute "on" in the agent element and use the function of multiplex communication.

In environments which use Globus Toolkit, usually there are no firewalls, so you don’t have to prepare.
But, you have to set the mxio attribute in the same manner if the clusters consist of private IP addresses.

The relationship between the agent and rex is shown by the figure below.

Communications between the client and rex, which are executed on remote node hosts are relayed by the
agent. And communications between the agent and clients are relayed by SSH’s port forwarding through
the firewall.

23

Chapter 9. Programming with OmniRpcHandle
API

OmniRpcHandle is a data structure used for connection with a specific remote executable program.
Using OmniRpcHandle , you can write programs which keep the status on a remote executable program.
And, you can allocate a remote executable program on a specific remote host.

What’s OmniRpcHandle
OmniRpcHandle is a data structure which presents a connection with a specific remote executable
program. OmniRpcHandle is created by activating the remote executable program which corresponds to
the module with the OmniRpcCreateHandle API. Once the remote executable program is executing,
remote executable programs can accept the requests of another RPC call which is inside of same module,
and the program does not need to exit after finishing calculation using a function in the module.

Using this feature, you can do the following.

• Keep the status on the remote executable program side. For instance, in function B you can use data
which are set by function A in the same module. In other words, you can reuse the data sent to
modules.

• Specify a remote node on which remote executable modules are activated.

With OmniRpcCall API, you specify the remote function only, and call the RPCs. From function name,
the client program searches for the modules which contain it. Also, on adequate remote hosts remote
program can run the remote executable program which corresponds to it, and assign. However if the
client program uses OmniRpcHandle API, you should program the host executable module on which the
programs are allocated. The host executable module should be allocated on a remote host. However,
problems may arise when remote executable modules fail or are unavailable due to a timeout.

Programming with OmniRpcHandle
For an easy example, we show a program which adds values which set the in setAB function and get its
value, and use the IDL file as is.

Define Sample;

Globals {
int a,b;

}

Define setAB(int in a0, int in b0)
{

a = a0; b = b0;
}

24

Chapter 9. Programming with OmniRpcHandle API

Define plusAB(int out ab[])
{

*ab = a + b;
}

In the Globals directive, we define, in a style similar to C language, the variables which are used in the
whole module. In the Globals scope, we write the module definitions in the style of C language.

You should compile this module with omrpc-cc, and register Sample.rex on the remote host
(alice.is.tsukuba.ac.jp)) with omrpc-register.

#include <OmniRpc.h>
#include <stdio.h>

int main(int argc,char *argv[]){
int ab;
OmniRpcHandle handle;

OmniRpcInit(&argc,&argv);
handle = OmniRpcCreateHandle("alice.is.tsukuba.ac.jp","Sample");

OmniRpcCallbyHandle(handle,"setAB",10,20);
OmniRpcCallbyHandle(handle,"plusAB",&ab);
printf("a+b=%d\n",ab);

OmniRpcHandleDestroy(handle);

OmniRpcFinalize();
exit(0);

}

After the modules are initialized, the client program first activates the remote executable programs with
OmniRpcCreateHandle API, and gets the OmniRpcHandle corresponding to it. Otherwise, by using
OmniRpcCallbyHandle, the client program can call functions in the modules. Finally, the client program
can stop the remote executable program with OmniRpcDestroyHandle API.

Also available is OmniRpcCallAsyncByHandle API, which call RPCs asynchronously.

Acquisition of host information.
With OmniRpcCreateHandle API, you specify the remote host name on which the remote executable
modules run. However, if you don’t, programs allocate the appropriate remote host on modules which are
registered.

25

Chapter 10. Automatic module initialization
with OmniRpcModuleInit API

By using OmniRpcModuleInit API, when modules of a remote executable program are activated, the call
initialize function is enabled automatically. So, you can write programs efficiently for master/worker
programs which require worker initialization. We call this OmniRPC’s restricted persistency model
"Automatic Initializable Module".

What’s auto module initialization
Auto module initialization is a function which calls the initialization method automatically when
modules of a remote executable program are invoked.

By using OmniRpcHandle API, you can write efficient programs which keep data on a remote executable
program, but you should write the program which is used by the remote executable program. We only
specify the remote functions which are specified by OmniRpcCall at the start, the OmniRPC system
executes and runs appropriate remote executable programs for requests. But we cannot know which
remote executable programs are allocated by the OmniRPC system, so it is impossible to set the data
beforehand.

In some OmniRPC master/worker programs, the master and worker share common data. Workers
calculate its data with different parameters which are taken from the master. Auto module initialization is
convenient in cases like this. In OmniRPC, if there is a function named "Initialize" in a module,
"Initialize" is called automatically when a new remote executable program is activated for an other
function’s RPC call. Common data are set in initialization, and it can be efficient to reuse this data when
function calls are called by real varied parameters. The bigger the costs of setup, the bigger are the
effects.

Programming with OmniRpcModuleInit API
For example, we will use a program to calculate the appearance of 10 sorts of strings (at a maximum of
10 characters) from a string which is 10000 characters in size. The sequential version may be written as
follows.

#include <stdio.h>
#include <string.h>

char data[10000]; /* data to be searched */
char str[10][10]; /* string to be compared */
int occurrence[10]; /* array to record occurrence */

/* prototype */
void count_occurrence(char *data,char *str, int *r);

int main(int argc, char *argv[])
{

26

Chapter 10. Automatic module initialization with OmniRpcModuleInit API

FILE *fp;
int i;

if((fp = fopen("data","r")) == NULL){
fprintf(stderr,"cannot open data file\n");
exit(1);

}
fread(data,10000,1,fp);
fclose(fp);

if((fp = fopen("strings","r")) == NULL){
fprintf(stderr,"cannot open strings file\n");
exit(1);

}
for(i = 0; i < 10; i++)

fscanf(fp,"%s",str[i]);
fclose(fp);

for(i = 0; i < 10; i++)
count_occurrence(data,str[i],&occurrence[i]);

for(i = 0; i < 10; i++)
printf("string(%i,’%s’) occurrence=%d\n",i,

str[i],occurrence[i]);

exit(0);
}

void count_occurrence(char *data,char *str, int *r)
{

int i,len,count;
len = strlen(str);
count = 0;
for(i = 0; i < 10000-len; i++){

if(strncmp(&data[i],str,len) == 0) count++;
}

*r = count;
}

To parallize this program with OmniRpcCallAsync, we calculate count_occurrence in the remote
executable program. The IDL file may be like the example shown below.

Module count_occurrence;

Define count_occurrence(char IN data[10000],char IN str[10], int OUT
r[]) Calls "C" count_occurrence(data,str,r);

Link this with the count_occurrence function. and register it. In the client program, we change a call of
count_occurrence to a call of OmniRpcCallAsync API.

int main(int argc, char *argv[])
{

FILE *fp;

27

Chapter 10. Automatic module initialization with OmniRpcModuleInit API

int i;
OmniRpcReqeust reqs[10];

OmniRpcInit(&argc,&argv);

... /* input data */

for(i = 0; i < 10; i++)
reqs[i] = OmniRpcCallAsync("count_occurrence",

data,str[i],&occurrence[i]);
OmniRpcWaitAll(10,reqs);

...
OmniRpcFinalize();
exit(0);

}

In this case, there is the problem that data are sent for each RPC call on the remote executable module.
This data is unchanged, so it is efficient to reuse the data sent on the remote executable program side.

By using OmniRpcModuleInit API, the client program sends the data in the initialization of the remote
executable programs, and sends only the strings which are searched with OmniRpcCall. We define the
IDL file as follows.

Module count_occurrence;

Globals {
#include <string.h>
char data[10000];
}

Define Initialize(char IN input_data[10000])
{

memcpy(data,input_data,10000);
}

Define count_occurrence_each(char IN str[10], int OUT r[]){
count_occurrence(data,str,r);

}

In the client program, initialization is described.

int main(int argc, char *argv[])
{

FILE *fp;
int i;
OmniRpcReqeust reqs[10];

OmniRpcInit(&argc,&argv);

... /* input data */

OmniRpcModuleInit("count_occurrence",data);

28

Chapter 10. Automatic module initialization with OmniRpcModuleInit API

for(i = 0; i < 10; i++)
reqs[i] = OmniRpcCallAsync("count_occurrence_each",

str[i],&occurrence[i]);
OmniRpcWaitAll(10,reqs);
...

OmniRpcFinalize();
exit(0);

}

We specify the necessary data in the initialization with OmniRpcModuleInit. The initializations are
indeed taken when the necessary remote executable modules are activated. So, it is important not to write
in the area addressed by the pointer variables in initialization.

29

Chapter 11. Direct Execution of Remote
Program

Usually, in OmniRPC we execute remote executable programs via the agent. It is possible to execute
directly to specify a remote executable module.

The case of direct activation of remote executable
program

Usually in OmniRPC, the client program executes a remote executable program via the agent. Here are
some advantages.

• By registering to the registry, it is possible to activate remote executable modules on the remote host
without knowing its path. Furthermore, in the case of the same module’s name, it is possible to
allocate the job to the appropriate remote host.

• When the remote host is a cluster, it is possible to allocate jobs to the cluster node host.

In this explanation, without the agent, we introduce a method to execute directly the remote executable
module and to call RPCs. If there are remote executable programs for which you know the path in a
certain remote host, you can omit registering remote executable programs, and so on. The advantages as
are listed below.

• Without describing a communication protocol, programs call function by using OmniRPC protocol.

• By activating using Globus and ssh, the function of port forwarding is available in authentication.

Setting environment for remote nodes.

• Client host is jones.tsukuba.ac.jp.

• Remote host is dennis.hpcc.jp.

• Set calc_sin.rex, which we introduced already as an example program, to "/usr/local/tmp/" .

• Globus Toolkit’s gate-keeper is running on dennis.hpcc.jp, and it is possible to execute programs
with GRAM.

If you use this function, it executes rex directly without the agent.

30

Chapter 11. Direct Execution of Remote Program

API for direct execution of remote program
Because, we don’t use the agent for direct execution, initialization of the library is taken by
OmniRpcExecInit() API.

APIs which activate remote executable programs on the remote host, are like APIs which use
OmniRpcHandle. OmniRpcExecOnHost() API enables the execution of a remote executable program,
which is specified by its path, on the specified remote host, and it returns OmniRpcExecHandle, which
presents its connection. By using OmniRpcExecCall it is possible to call a function which is inside a
module.

We show this example below.

#include <OmniRpc.h>
#include <stdio.h>

int main(int argc,char *argv[]){
double r;
OmniRpcExecHandle handle;

OmniRpcExecInit(&argc,&argv);
handle = OmniRpcExecOnHost("dennis.hpcc.jp","/usr/local/tmp/calc_sin.rex");

OmniRpcExecCall(handle,"calc_sin",10,&r);
printf("sin(10)=%g\n",r);

OmniRpcExecTerminate(handle);

OmniRpcExecFinalize();
exit(0);

}

OmniRpcExecTerminate API enables the termination of the remote executable program which responds
to the handle. Finally, you should use OmniExecFinalize() at the end of the program.

Program execution
You should specify the path of an executable program to activate the remote executable program. For
example, the case of an execution using Globus is as follows.

% a.out --globus args...

In the case of SSH activation, you specify "--ssh."; if don’t specify this, rsh is used to activate.

31

Chapter 11. Direct Execution of Remote Program

The limitation of direct activation of remote executable
programs.

At this time, there are some limitations with this method.

• No support for a multi-thread environment (no thread-safe)

• No support for asynchronous calls.

• No support for activating with multiple methods of activation.

We hope to improve these issues in the future.

32

Chapter 12. File Transfer in OmniRPC

File Transfer using Filename
OmniRPC supports file transfer between client program and remote executable program. In file transfer
mode, you should spcify filenames which you want to transfer files.

Write Remote Executable Program
For an easy example, we show a program which concatinates 2 files and use the IDL file as is.

Module testfile;

Globals {
#include <math.h>
}

Define testfile(IN filename infile[2], OUT filename outfile[])
{

FILE *infp, *outfp;
char tmp[128];
int i;

fprintf(stderr, "STUB : infile[0] : %s\n", infile[0]);
fprintf(stderr, "STUB : infile[1] : %s\n", infile[1]);

if((outfp = fopen(*outfile, "w+")) == NULL){
perror("fopen");
exit(1);

}
for(i = 0; i < 2; i++){

if((infp = fopen(infile[i], "r+")) == NULL){
perror("fopen");
exit(1);

}

while(fgets(tmp, sizeof(tmp), infp) != NULL){
fprintf(outfp, "%s", tmp);

}
fclose(infp);

}

fclose(outfp);
fprintf(stderr, "STUB : END\n");
fflush(stderr);

}

33

Chapter 12. File Transfer in OmniRPC

In this source code, special identification filename is introduced for file transfer. Type of filename is
string (which is a alias of char *). In this example, infile[2] is string typed array variable. At the
execution time, OmniRPC remote executable create new filename before the procedure in remote
program. So you can use infile as filename strings. But output variable of outfile in IDL file is filename
pointer, that alias is char **.

We can generate a remote executable program from the IDL file by using omrpc-cc. So, let’s convert
using this command.

% omrpc-cc testfile.idl

Write Client Program

#include <OmniRpc.h>
#include <stdio.h>

int main(int argc,char *argv[])
{

char *infile[2] = {"a.txt", "b.txt"};
char *outfile = "a.out";
char tmp[128];
FILE *fp;
int i,j;
int c = 0;

OmniRpcInit(&argc,&argv);

for(i = 0 ;i < 2; i++){
if((fp = fopen(infile[i], "w+")) == NULL){

perror("cannot open file");
exit(1);

}
for(j =0; j < 128; j++)

fprintf(fp, "%i\n",c++);
fflush(fp);
if(fclose(fp) != 0){

perror("cannot close file");
}

}

OmniRpcCall("testfile", infile, &outfile);

fprintf(stderr, "TRANSFER FIN\n");
fflush(stderr);

if((fp = fopen(outfile, "r+")) == NULL){
perror("cannot open file");
exit(1);

34

Chapter 12. File Transfer in OmniRPC

}
while(fgets(tmp, sizeof(tmp), fp) != NULL){

fprintf(stdout, "OUTPUT:%s", tmp);
}

OmniRpcFinalize();
}

We can generate a client program from the C file by using omrpc-cc. So, let’s convert using this
command.

% omrpc-cc -o testfile testfile.c

Execution of Program
Before you execute this example, you should prepaer 2 file (named a.txt and b.txt) in the same directory
on which client program is.

You can execute the client program in the same manner without using the hosts.xml file.

% testfile --hostfile hosts.xml

After execution, you can see the file named "a.out" in the the same direcotry of client program.

Setting of WorkingDirectory

OmniRPC remote executable uses a temporary directory to store files. Default temporary directory is
"/tmp", but you can use another directory by specifying the WorkingPath in hostfile. And your login id
has write and read permission on that directory. We show an example of hostfile which specify
temporary directory.

<OmniRpcConfig>
<Host name="alice.hpcc.jp" user="foo" arch="i386" os="linux">

<Agent invoker="globus" mxio="on" path="/usr/local/omrpc"/>
<JobScheduler type="rr" maxjob="6" />
<Registry path="/home/foo/app/stubs" />
<WorkingPath path="/home/foo/tmp" />

</Host>
</OmniRpcConfig>

35

Chapter 13. Programming in FORTRAN
In this section, we explain how to program OmniRPC in FORTRAN. If you want to know more details
about APIs, see Section FORTRAN API.

A simple example in FORTRAN
Let’s think about this Fortran program. This program calculates the inner product of a matrix. The main
program is called main.f, and ip.f is the subroutine that calculates the inner product.

main.f

double precision a(10),b(10),r
do i = 1,10

a(i) = i
b(i) = i+10

end do
call innerprod(10,a,b,r)
write(*,*) ’result=’,r
end

ip.f

subroutine innerprod(n,a,b,r)
integer n
double precision a(*),b(*),r
integer i
r = 0.0
do i = 1,n
r = r+a(i)*b(i)

end do
return
end

Let’s set this program to call the innerprod subroutine with OmniRPC.

Create remote executable program
As in a C program, we create a program which executes a subroutine on remote hosts. So, we define an
interface to innerprod. We set the module name as f_innerprod, and the function name as innerprod.

Module f_innerprod;

Define innerprod(IN int n, IN double a[n], IN double b[n],
OUT double result[1])

Calls "Fortran" innerprod_(n,a,b,result);

The argument which specifies the array size must be a scalar variable. The double precision type in
FORTRAN is "double", the real type is "float". If you directly call a FORTRAN function with calls,

36

Chapter 13. Programming in FORTRAN

you specify "Fortran". Calling a function can mangle the function name in FORTRAN. Usually, in the
case of the FORTRAN compiler, a mangled name is a name to which "_" has been added. Please pay
attention to whether a function name contains "_"; if it is mangled, add "__" in g77 (gcc).

This definition is the same as the above definition. As scalar variable is taken as the address pointer.

Module f_innerprod;

Define innerprod(IN int n, IN double a[n], IN double b[n],
OUT double result[1])

{
innerprod_(&n,a,b,result);

}

Generate OmniRPC’s remote executable modules from this IDL file. We name this IDL file f_ip.idl.

% omrpc-fc f_ip.idl ip.f

When you run this command, the remote executable program f_ip.rex is generated. To register with
omrpc-register, the method is the same as in C language.

% omrpc-register -register f_ip.rex

The command omrpc-fc, it compiles FORTRAN program with f77. If you want to use another compiler,
use the "-fc" option. For example, if you want to use the intel Fortran compiler of ifc, run the following
command.

% omrpc-fc -fc ifc f_ip.idl ip.f

Client program in Fortran
And now, change the client program main.f to call the remote executable program with OmniRPC.

double precision a(10),b(10),r
call OMINRPC_INIT
do i = 1,10

a(i) = i
b(i) = i+10

end do
call OMNIRPC_CALL("f_innerprod*",10,a,b,r)
write(*,*) ’result=’,r
call OMNIRPC_FINALIZE
end

This program initializes with OMNIRPC_INIT and calls by OMNIRPC_CALL. Please keep in mind that the
entry name which is specified by OMNIRPC_CALL should have "*" at the end of the name which is
defined on the interface. You should add "*" to the end of strings which are obtained with OmniRPC,

37

Chapter 13. Programming in FORTRAN

such as the module name and host name. OmniRPC considers "*" to be a string terminator in
OmniRPC’s Fortran API.

Using omrpc-fc to compile this file.

% omrpc-fc main.f

An asynchronous call in FORTRAN
Finally, we show an example which is written in FORTRAN. this example is also shown in the section
Parallel programming with OmniRPC .

double precision res(10)
double precision x
integer ireqs(10)
call omnirpc_init
x = 0.0
do i = 1, 10

call omnirpc_call_async(ireqs(i),’calc_sin*’,x,res(i))
x = x + 1.0

end do
call omnirpc_wait_all(10,ireqs)
do i = 1, 10

write(*,*) ’res(’,i, ’)=’,res(i)
end do
call omnirpc_finalize
end

For API details, see Fortran API

38

Appendix A. Description of hostfile
The hostfile is an XML file that describes the execution environment. We will show the procedure to
describe it.

Specifying the hostfile
In the hostfile, you should specify which host a client program uses. You should type the command
option "--hostfile" for the client program.

% a.out --hostfile host_file args...

If "--hostfile" is not set, by default the hosts.xml in each user’s registry is used. In other words,
"$HOME/.omrpc-registry/hosts.xml" is nnused as the default setting.

How to describe
We show an example below.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="jones.is.tsukuba.ac.jp">
<Host name="alice.hpcc.jp" user="foo" arch="i386" os="linux">

<Agent invoker="globus" mxio="on" path="/usr/local/omrpc"/>
<JobScheduler type="rr" maxjob="6" />
<Registry path="/home/foo/app/stubs" />

<WorkingPath path="/home/foo/tmp" />
<Description>
This is a sample host description.
</Description>

</Host>
<TimeOut second="20">

</OmniRpcConfig>

We specify 2 hosts(jones.is.tsukuba.ac.jp and alice.hpcc.jp). In
jones.is.tsukuba.ac.jp, the defaults setting is used, so the invocation method of the agent is "rsh"
and a remote executable program is allocated. Because alice.hpcc.jp is a remote server node, Globus
Toolkit’s GRAM is used as a agent invocation method. Registry is at "/home/foo/app/stubs", not the
default setting. Remote executable programs are executed by the round-robin scheduler, which is the
built-in scheduler in the OmniRPC agent. 6 remote executable programs are invoked. Also, the account
in alice.hpcc.jp is "foo and worker programs use "/home/foo/tmp" directory to store temporary
files, not the default setting (default directory is "/tmp"

39

Appendix A. Description of hostfile

Details of Hostfile
Hostfile is an XML file which has OmniRpcConfig at the top level. OmniRpcConfig’s element is Host.

Host element
In the host element, you should describe the hosts which you use.

Name attribute:(Required)

You should specify the host name with the name attribute.

User attribute: (Optional, user name on client host if omitted)

You can set the user name when the user names are different on the client host and remote host. If
the value of the user attribute is omitted, the user name on the client host is used.

Arch attribute, os attribute(Optional)

At this writing, you can specify the architecture (arch) and operating system (os), but these values
are not used.

In the host, you can specify the attributes below.

Agent element: (Optional)

In OmniRPC, the omrpc-agent is invoked in initialization, and the agent element is a option for the
agent. It has no elements. but you can specify the following attributes.

invoker attribute: rsh, ssh, gram, globus (Required if agent element used)

You should specify the method of the agent invocation. "gram" is an alternative name for globus. If
the agent element is omitted, the default invoker is rsh.

mxio attribute: on, off (Optional, off if omitted)

You should specify whether or not you use multiplex communication. Set this value on if you want
to use the relay of communication by the agent. If you don’t specify the value of the mxio attribute,
the default value is off.

path attribute: (Optional, /usr/local/omrpc/ if omitted)

On this host, if OmniRpc software is not installed in the default install path (/usr/local/omrpc), you
should specify the path attribute as the install path.

JobScheduler element: (Optional)

Specify the jobscheduler of the omrpc-agent which executes the remote executable. There are some
attributes. If this element is omitted, the default type is fork and maxjob is 1.

40

Appendix A. Description of hostfile

type attribute: fork, round_robin, rr, pbs, sge (Required if jobschedular element used)

You specify the type of jobscheduer. "rr" is an alternative name for "round_robin". "pbs" stands for
portable batch system and sge stands for sun grid engine.

maxjob attribute: (Option. 1 if omitted)

You specify the number of maximum jobs which can be executed on the remote host. If the value is
omitted, maxjob is set to 1.

Registry element: (Optional)

Specifys the path to the registry on the remote host. If this element is omitted, the registry path is the
home directory on the remote host.

path attribute: (Required if registry element used)

You should specify the path to registry.

WorkingPath element: (Optional)

Specifys the directory on which worker program in remote side can store the file.

path attribute: (Required if registry element used)

You should specify the path that workers store temporary files .

Description element: (Optional)

You can describe information about host.

TimeOut element: (Optional)
Specifys the timeout seconds of connection between client program and OmniRPC agent. Default
seconds is 15 .

second attribute: (Required if registry element used)

You can specify the timeout second when the client program invokes OmniRPC agent in remote
nodes. Sometimes the client program fails because of long phease of authentication. If you meet
that case, please increase that value.

Debug element: (Optional)
If you want OmniRPC client program to show debug message, please write Debug element in hostfile.

41

Appendix A. Description of hostfile

DTD (Document Type Definition) of hostfile.
<!ELEMENT OmniRpcConfiguration (Host+, TimeOut?, Debug?)>
<!ATTLIST OmniRpcConfiguration version CDATA>

<!ELEMENT Host (Agent?, JobScheduler?, Registry?, WorkingPath?, Description?)>
<!ATTLIST Host name CDATA #REQUIRED>
<!ATTLIST Host user CDATA >
<!ATTLIST Host arch CDATA>
<!ATTLIST Host os CDATA>

<!ELEMENT Agent EMPTY>
<!ATTLIST Agent invoker (rsh|ssh|globus|gram) #REQUIRED>
<!ATTLIST Agent mxio (on|off)>
<!ATTLIST Agent path CDATA>

<!ELEMENT JobScheduler EMPTY>
<!ATTLIST JobScheduler type (fork|rr|round_robin|pbs|sge) #REQUIRED>
<!ATTLIST JobScheduler maxjob CDATA>

<!ELEMENT Registry EMPTY>
<!ATTLIST Registry path CDATA #REQUIRED>

<!ELEMENT WorkingPath EMPTY>
<!ATTLIST WorkingPath path CDATA #REQUIRED>

<!ELEMENT TimeOut EMPTY>
<!ATTLIST TimeOut second CDATA #REQUIRED>

<!ELEMENT Debug EMPTY>

<!ELEMENT Description (#PCDATA)>

42

Appendix B. IDL (Interface Description
Language)

To create a remote executable program, you need to write an IDL file which describes the interfaces of
each remote function. In this section, we explain IDL.

IDL file and generation of remote executable programs
We define a remote executable module in the IDL file. The stub generation program (omrpc-gen) from
the IDL file description creates a remote executable program which communications with the remote
executable module. A command (omrpc-cc) is a driver that generates the remote executable program and
, also serves as link to library.

Example
We show an example as follows.

Module mat_mult;

Define dmmul(mode_in int n, mode_in double A[n][n],
mode_in double B[n][n],
mode_out double C[n][n])

{
double t;
int i,j,k;
for (i=0;i<n;i++){

for (j=0;j<n;j++){
t = 0;
for (k=0;k<n;k++){

t += A[i*n + k] * B[k*n+j]; /* inner product */
}
C[i*n+j] = t;

}
}

}

The module statement defines the module name. The functions inside this module are described by the
"Define" statement The definitions of the arguments are similar to those in C language, but some
differences exist, as follows.

• You can specify whether a variable is input (mode_in or IN) or output (mode_out or OUT).

• For an array, you can specify its size with an input parameter.

• It is impossible to use the return value of the function itself.

43

Appendix B. IDL (Interface Description Language)

After the Define statement, you can describe any program in C language inside of brace ({...}).
Argument names can be used as the arguments in C language without modification.

You can call a library function, like the example, below.

Define dmmul(mode_in int n, mode_in double A[n][n],
mode_in double B[n][n],
mode_out double C[n][n])

Calls "C" mmul(n,A,B,C);

This above example calls "mmul" function, which writes in C language.

And, you can define multiple functions inside the module’s definition file. These descriptions should be
in the remote executable program.

At the time of this writing, fundamental data types and their arrays are supported. We are going to
support structure data types in a future release.

Details of IDL
A description of IDL includes some elements.

• Module statement

• Define statement

• Globals statement

• FORTRAN format statement

In the explanation below, we define the identifier as names which consist of alphanumeric characters
with start with the element followed by an underscore (’_’).

Module statement
We define the module’s name.

Module module_name;

module_name is the identifier of the module. You should define the module name first in IDL file.

Define statement
We define an interface of a function which called from the remote program.

Define function_name (parameter1,parameter2,...)
"...description..."

interface_body

44

Appendix B. IDL (Interface Description Language)

Function name is "function_name." We describe this parameter as follows.

mode type_specifier parameter_name

Mode specifies whether an argument is input or output. If the argument is input, you write "mode_in" or
"IN." If the argument is output, you should write "mode_out" or "OUT ." And, if you want to allocate
temporary data, you can specify "work." the "type_specifier" supports the names of the fundamental data
type in C language, "string," which stands for string, "filename which stands for file specifyed filename
and "filepointer" which stands for filepointer.

You can specify arguments of an array in C language.

mode type_specifier parameter_name[size]...

Arguments of a multi-dimensional array are enclosed in brackets ([...]) for each dimension, as in C
language.

You can describe the upper limit, bottom limit and stride of a transferred array area.

mode type_specifier parameter_name[size:low,high,stride]...

Between the body information about the function is described in a string.

In the body, you need to conform to C language.

Define function_name (...) { in manner of C language }

In the description of a function of C , arguments are accessed as a parameter variable.

And, if you call a function which is linked, you write the function call after the Call directive.

Define function_name (...) Calls foo(...);

Globals statement
You can describe in programs written in C language the functions and data which are to be used in an
entire module. For example, you can describe a necessary function definition when you define the
definition of the function in C language. And, you can describe variables which are shared in functions
and multiple functions.

Globals { ... any programs }

Fortranformat statement
This specifies the rule of function mangling when function link to FORTRAN program.

45

Appendix B. IDL (Interface Description Language)

Differences from Ninf IDL
OmniRPC’s IDL description is based on Ninf’s IDL. However, there are some differences.

• Ninf creates a remote executable program for each definition of a function. OmniRPC creates a remote
executable program for the entire module.

• In OmniRPC, variables which are defined in a Global statement are shared in a function inside the
module.

• Ninf dose not have "Required" specifications which specify the link to a library for a function.

• As of now, OmniRPC’s IDL cannot define remote functions for MPI.

IDL grammar
We show the informal definitions of IDL grammar as follows.

• ’...’ indicates a literal.

• IDENTIFIER is an identifier, CONSTANT is a constant.

• STRING is one or more character inside double quotation marks("..."). OPT_STRING is a STRING
which can be omitted.

• {..}* stands iteration which not less than 0.

• C_PROGRAM stands for any program in C.

• type_specifier are fundamental data types of C, string, filename which stands for file and filepointer
which stands for FILE pointer.

program := {declaration}*

declaration:=
’Module’ IDENTIFIER ’;’

| ’Define’ interface_definition OPT_STRING interface_body
| ’Globals’ ’{’ C_PROGRAM ’}’
| ’Fortranformat’ STRING ’;’

;

interface_definition:=
IDENTIFIER ’(’ parameter {’,’ parameter}* ’)’

;

parameter:= decl_specifier declarator ;

decl_specifier:
type_specifier
| MODE
| MODE type_specifier
| type_specifier MODE
| type_specifier MODE type_specifier

46

Appendix B. IDL (Interface Description Language)

;

MODE := ’mode_in’ | ’IN’ | ’mode_out’ | ’OUT’;

declarator=:
IDENTIFIER

| ’(’ declarator ’)’
| declarator ’[’expr_or_null ’]’
| declarator ’[’expr_or_null ’:’ range_spec ’]’
| ’*’ declarator
;

range_spec=:
expr

| expr ’,’ expr
| expr ’,’ expr ’,’ expr
;

interface_body:
’{’ C_PROGRAM ’}’
| CALLS OPT_STRING IDENTIFIER ’(’ IDENTIFIER {’,’ IDEFINTIER}* ’)’ ’;’
;

expr_or_null:= expr | /* null */;

expr:= primary_expr
| ’*’ expr /* pointer reference */
| ’-’ expr /* unary minus */
| expr ’/’ expr
| expr ’%’ expr
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’^’ expr
| expr RELOP expr

| expr ’?’ expr ’:’ expr
;

primary_expr:=
primary_expr ’[’ expr ’]’

| IDENTIFIER
| CONSTANT
| ’(’ expr ’)’
;

47

Appendix C. Command Reference

Command Reference

omrpc-register

Name
omrpc-register — Operations about OmniRPC’s registry.

Synopsis

omrpc-register [-path reg_path] [-show | -help | -clear | [-register | -remove] rex_prog]

Description
Adds registry of remote executable programs, and removes them from the registry. Shows the current
registry.

Options

-path reg_path

Specifies path to the registry. The default registry path is "$HOME/.omrpc-registry".

-show

Shows information about the current registry.

-clear

Removes all information about current registry.

-register rex_prog

Registers the remote executable program rex_prog on remote host.

-remove rex_prog

Removes the remote executable program rex_prog from the registry.

48

Appendix C. Command Reference

-help

Displays help and exits.

omrpc-cc

Name
omrpc-cc — Compile driver for OmniRPC program.

Synopsis

omrpc-cc [options] [file.idl] [file.c ...]

Description
The compile driver for the OmniRPC program. Links to necessary OmniRPC library. And, if the IDL file
is in the arguments, creates remote executable program which corresponds to it.

When you create client program, the command is used like a C compiler. For example:

% omrpc-cc -o foo foo.c goo.o

Like a C compiler, this compiles foo.c, and links to goo.o, then the executable file foo is created.
During this time, this command automatically sets the library and include file, which are necessary for
OmniRPC. Additionally, if "-o" is not specified, like a C compiler, the object file is "a.out."

If the IDL file has an ".idl" extension in the argument file, this command generates the OmniRPC remote
executable program from this file. This program name takes on the extension ".rex", for instance,

% omrpc-cc bar.idl goo.o

In this case, bar.rex is generated from bar.idl, and goo.o is the library linked to a remote execution
program.

Options

-c

Compiles and generates the object file, but not the link.

49

Appendix C. Command Reference

-o

Specifies object files.

-llib_dir

Specifies the path to the library’s directory.

-show

Shows the command which should be executed. Execution is not carried out.

-echo

Shows the command which should be executed.

-liner link_command

Specifies the command to the link. If this option is omitted, the default command is cc, which is a
driver of the C compiler. For example, if you use Fortran, you can specify f77 as a linker.

omrpc-fc

Name
omrpc-fc — FORTRAN Compile driver for OmniRPC program.

Synopsis

omrpc-fc [options] [file.idl] [file.f ...]

Description
The compile driver for the OmniRPC program. Links to necessary OmniRPC library. And, if the IDL file
is in the arguments, creates remote executable program which corresponds to it.

When you create client program, the command is used like a FORTRAN compiler. For example:

% omrpc-fc -o foo foo.f goo.o

Like a FORTRAN compiler, this compiles foo.f, and links to goo.o, then the executable file foo is
created. During this time, this command automatically sets the library and include file, which are
necessary for OmniRPC. Additionally, if "-o" is not specified, like a FORTRAN compiler, the object file
is "a.out."

50

Appendix C. Command Reference

If the IDL file has an ".idl" extension in the argument file, this command generates the OmniRPC remote
executable program from this file. This program name takes on the extension ".rex", for instance,

% omrpc-fc bar.idl goo.o

In this case, bar.rex is generated from bar.idl, and goo.o is the library linked to a remote execution
program.

Options

-c

Compiles and generates the object file, but not the link.

-o

Specifies object files.

-llib_dir

Specifies the path to the library’s directory.

-show

Shows the command which should be executed. Execution is not carried out.

-echo

Shows the command which should be executed.

-liner link_command

Specifies the command to the link. If this option is omitted, the default command is cc, which is a
driver of the C compiler. For example, if you use Fortran, you can specify f77 as a linker.

-fc fortran_compiler

If you want to use another compiler, use the "-fc" option (default FORTRAN compiler is g77).

omrpc-register

Name
omrpc-gen — A program to generate OmniRPC’s stub.

51

Appendix C. Command Reference

Synopsis

omrpc-gen [file.idl] [file.c]

Description
Generates the stub program file.c (in C language) from the IDL file file.idl. If the IDL file is
omitted, the input is from STDIN. If the stub program argument is omitted, the output is STDOUT .
Usually IDL files uses the file extension ".idl". The source file of stub program use the extension ".rex.c".
The remote executable program which is compiled from the stub program, use the extension ".rex".

This program usually call from the OmniRPC’s compile driver, so you can use it directly. If you compile
the stub source program directly, you should specify the include directory, which is below the install
directory, as the include path. And when you create the remote executable program, you should link the
library for the stub (libomrpc_stub.a and libomrpc_io.a). If you install OmniRPC at the INSTALL_DIR,
you should compile in the way shown below.

%cc -o foo.rex -IINSTALL_DIR/include foo.rex.c
... -LINSTALL_DIR/lib -lomrpc_stub.a -lomrpc_io

52

Appendix D. OmniRPC API index

OmniRPC C API

OmniRpcInit

Name
OmniRpcInit — Initialization of OmniRPC system

Synopsis

#include <OmniRpc.h>

void OmniRpcInit(int *argc, char **argv[]);

Description
Initializes OmniRPC System. Sets argc by the argc pointer of the main function, sets argv by the argv
pointer of it. This should be called before processing the argument information. In initialization, it uses
the hostfile which is specified in the command line "--hostfile" or the hostfile on
"$HOME/.omrpc-registry/hosts.xml" if not specified. It reads the hostfile and executes omrpc-agent on
the host which are used. And, it reads registry information about the remote executable programs which
are registered on the each host.

OmniRpcFinalize

Name
OmniRpcInit — Finalize OmniRPC system

53

Appendix D. OmniRPC API index

Synopsis

#include <OmniRpc.h>

void OmniRpcFinalize(void);

Description
Finalize OmniRPC system. Terminate all remote executable programs and agents.

OmniRpcCall

Name
OmniRpcCall — Synchronous call of remote function

Synopsis

#include <OmniRpc.h>

int OmniRpcCall(const char *entry_name, ...);

Description
Calls a remote function which is specified by entry_name. It blocks the caller thread until the end of the
function call.

It searches for the function name from modules which are registered on the one of remote hosts which
are described in the hostfile, and calls the function on the appropriate remote host. If the function name is
not found, it returns OMRPC_ERROR. If it ends normally, it returns OMRPC_OK.

54

Appendix D. OmniRPC API index

OmniRpcCallAsync

Name
OmniRpcCallAsync — Asynchronous call of remote function

Synopsis

#include <OmniRpc.h>

OmniRpcRequest OmniRpcRequest(const char *entry_name, ...);

Description
Requests to call a remote function which is specified by entry_name, and returns the data structure
(OmniRpcRequest) for the request. It blocks the caller thread.

It search for a function name from the modules which are registered on the remote hosts, which are
described in the hostfile, and calls the function on the appropriate remote host. If the function name is not
found, it returns NULL.

OmniRpcWait

Name
OmniRpcWait — Wait for asynchronous call

Synopsis

#include <OmniRpc.h>

void OmniRpcWait(OmniRpcRequestreq);

55

Appendix D. OmniRPC API index

Description
It blocks the caller thread until the end of an asynchronous call for the call request of req.

OmniRpcProbe

Name
OmniRpcProbe — Probing asynchronous function call

Synopsis

#include <OmniRpc.h>

int OmniRpcProbe(OmniRpcRequestreq);

Description
Probes whether or not an asynchronous function call which associated to the call request of req finishes.
If it does not finish, it returns 0. If it finishes, it returns 1.

OmniRpcWaitAll

Name
OmniRpcWaitAll — Wait of multiple asynchronous calls

Synopsis

#include <OmniRpc.h>

voidOmniRpcWaitAll(intn, OmniRpcRequestreqs[]);

56

Appendix D. OmniRPC API index

Description
It blocks caller threads until the end of all asynchronous function calls which correspond to n call
requests of reqs. The call requests are stored in an array of OmniRpcRequest.

OmniRpcWaitAny

Name
OmniRpcWaitAny — Wait of multiple asynchronous function calls

Synopsis

#include <OmniRpc.h>

intOmniRpcWaitAny(intn, OmniRpcRequestreqs[]);

Description
It blocks caller threads until the end of one asynchronous function call which corresponds to n call
requests of req, which are stored in an array of OmniRpcRequest. It returns the positions of finished call
requests in the array. The finished call request elements on the array are set with NULL.

OmniRpcCreateHandle

Name
OmniRpcCreateHandle — Invocation of remote executable program

Synopsis

#include <OmniRpc.h>

OmniRpcHandle OmniRpcCreateHandle(const char *hostname, const char

*module_name);

57

Appendix D. OmniRPC API index

Description
Executes the remote executable program of the module which is specified by module_name, and that is
on the remote host which is specified by hostname. It returns handle corresponding to it. By using this,
it calls functions on running remote executable programs with OmniRpcCallByHandle. If hostname is
NULL, it selects the appropriate host in registered modules, and execute remote executable program of
module. If host name or module are incorrect, it returns NULL.

OmniRpcCallByHandle

Name
OmniRpcCallByHandle — Synchronous function call with OmniRpcHandle

Synopsis

#include <OmniRpc.h>

int OmniRpcCallByHandle(OmniRpcHandlehandle, char *entry_name, ...);

Description
Calls function on running remote executable program corresponding to the handle by
OmniRpcCreateHandle. It blocks the caller thread until the end of the function call. If the function does
not exist, it returns NULL.

OmniRpcCallAsyncByHandle

Name
OmniRpcCallAsyncByHandle — Asynchronous call of function with OmniRpcHandle

58

Appendix D. OmniRPC API index

Synopsis

#include <OmniRpc.h>

OmniRpcRequest OmniRpcCallAsyncByHandle(OmniRpcHandlehandle, char

*entry_name, ...);

Description
Calls function on running executable program corresponding to the handle created by
OmniRpcCreateHandle. It calls a function and returns the OmniRpcRequest which is associated with it.
It probes the end of the function and blocks control by OmniRpcWait, OmniRpcProbe, OmniRpcWaitAll
and OmniRpcWaitAny APIs.

OmniRpcDestroyHandle

Name
OmniRpcDestroyHandle — Termination of remote executable program by OmniRpcHandle

Synopsis

#include <OmniRpc.h>

void OmniRpcDestroyHandle(OmniRpcHandlehandle);

Description
Terminates running remote executable program corresponding to the handle which is created by
OmniRpcCreateHandle.

59

Appendix D. OmniRPC API index

OmniRpcModuleInit

Name
OmniRpcModuleInit — Setting of module initialization

Synopsis

#include <OmniRpc.h>

intOmniRpcModuleInit(const char *module_name, ...);

Description
Sets arguments for initialization of the module named module_name. The "Initialize" function is
required in the modules of remote executable programs. When the remote executable programs of
modules are executed, it calls the "Initialize" function with sets the arguments. This API only sets the
arguments; the actual initialization occurs when the remote executable program is executed.

OmniRpcExecInit

Name
OmniRpcExecInit — Initialization for direct invocation of remote executable program

Synopsis

#include <OmniRpc.h>

voidOmniRpcExecInit(int *argc, char **argv[]);

Description
Initializes OmniRPC system for direct invocation of a remote executable program. You should set argc
by the argc pointer of the main function, and sets argv by the argv pointer of it. You call this API in the

60

Appendix D. OmniRPC API index

main function of program before processing argument information. As in OmniRpcInit, the agent is not
executed.

In the command option, if you specify "--globus", it uses GRAM, or, if you specify "--ssh", it uses ssh to
invoke the remote executable program directly. It uses rsh by default.

OmniRpcExecFinalize

Name
OmniRpcExecFinalize — Termination of OmniRPC system for direct invocation of remote
executable program

Synopsis

#include <OmniRpc.h>

void OmniRpcExecFinalize(void);

Description
Finalizes of OmniRPC system. Terminates all remote executable programs.

OmniRpcExecOnHost

Name
OmniRpcExecOnHost — Direct invocation of remote executable program

Synopsis

#include <OmniRpc.h>

OmniRpcExecHandleOmniRpcExecOnHost(char *host_name, char *prog_name);

61

Appendix D. OmniRPC API index

Description
Invokes remote executable program prog_name on the remote host which is specified host_name, and
returns the corresponding handle. Specify prog_name with path on remote host. Using this with
OmniRpcExecCall, it is possible to call functions on running remote executable programs. You should
initialize with OmniRpcExecInit API if you use this function. If the host name or module name is
incorrect, it returns NULL.

OmniRpcExecCall

Name
OmniRpcExecCall — Synchronous call by OmniRpcExecHandle

Synopsis

#include <OmniRpc.h>

int OmniRpcExecCall(OmniRpcHandlehandle, const char *func_name, ...);

Description
Calls a function of the running remote executable program corresponding to the handle created by
OmniRpcExecOnHost. It blocks the called thread until the end of the function. If the remote executable
program does not have a function, it returns NULL.

OmniRpcExecTerminate

Name
OmniRpcExecTerminate — Termination of remote executable program by OmniRpcExecHandle

62

Appendix D. OmniRPC API index

Synopsis

#include <OmniRpc.h>

voidOmniRpcExecTerminate(OmniRpcHandlehandle);

Description
Terminates the running remote executable program corresponding to the handle created by
OmniRpcExecOnHost.

OmniRPC FORTRAN API
All APIs are wrapper subroutines of OmniRPC.

OMNIRPC_INIT

Name
OMNIRPC_INIT — Initialization of OmniRPC system

Synopsis

callOMNIRPC_INIT(void);

Description
Initializes the OmniRPC system.

63

Appendix D. OmniRPC API index

OMNIRPC_FINALIZE

Name
OMNIRPC_FINALIZE — Finalizing OmniRPC system

Synopsis

call OMNIRPC_FINALIZE(void);

Description
Finalizes the OmniRPC system. Terminates all remote executable programs and agents.

OMNIRPC_CALL

Name
OMNIRPC_CALL — Synchronous call of remote function

Synopsis
character*(*) entry_name

call OMNIRPC_CALL(entry_name);

Description
Calls a remote function which is specified by entry_name. It blocks the caller thread until the end of the
function call. entry_name is a string to which "*" is added.

It searches for the function name from modules which are registered on the remote hosts described in the
hostfile, and calls the function on the appropriate remote host.

64

Appendix D. OmniRPC API index

OMNIRPC_CALL_ASYNC

Name
OMNIRPC_CALL_ASYNC — Asynchronous call of remote function

Synopsis
character*(*) entry_name
integer ireq

call OMNIRPC_CALL_ASYNC(ireq, entry_name, ...);

Description
Makes a request to call the remote function which is specified entry_name, and returns the ID of req for
the request. entry_name is a string which is a combination of the function name and ’*’ character. It
blocks the caller thread. It probes the end of the function and blocks control by using OMNIRPC_WAIT,
OMNIRPC_PROBE, OMNIRPC_WAIT_ALL, OMNIRPC_WAIT_ANY API, all of which are possible
whether the function ends or not.

Searches for the function name from modules registered on remote hosts, which are described in the
hostfile, and calls function on the appropriate remote host. If the function name is not be found, it sets
req to 0.

OMNIRPC_WAIT

Name
OMNIRPC_WAIT — Wait for asynchronous call

65

Appendix D. OmniRPC API index

Synopsis
integer ireq

call OMNIRPC_WAIT(ireq);

Description
It blocks the caller thread until the end of an asynchronous call for the call request of ireq.

OMNIRPC_PROBE

Name
OMNIRPC_PROBE — Probing asynchronous function call

Synopsis
integer ireq, istatus

call OMNIRPC_PROBE(ireq, istatus);

Description
Probes whether or not an asynchronous function call which is associated with call the request of ireq
finishes. If it does not finish, it sets istatus as 1. If it finishes, it sets istatus as 0.

66

Appendix D. OmniRPC API index

OMNIRPC_WAIT_ALL

Name
OMNIRPC_WAIT_ALL — Wait of multiple asynchronous calls

Synopsis
integer nreq, ireqs(*)

call OMNIRPC_WAIT_ALL(nreq, ireqs);

Description
It blocks caller threads until the end of all asynchronous function calls corresponding to nreq. Calls
requests of req which are stored in an array of ireqs.

OMNIRPC_WAIT_ANY

Name
OMNIRPC_WAIT_ANY — Wait of multiple asynchronous function calls

Synopsis
integer nreq, ireqs(*), iret

call OMNIRPC_WAIT_ANY(nreq, ireqs, iret);

67

Appendix D. OmniRPC API index

Description
It blocks caller threads until the end of one asynchronous function call corresponding to nreq call
requests of ireq, which are stored in an array of OmniRpcRequest. As a return value, it sets iret to the
position of the finished call requests in the array. Finished call request elements in the array is set as 0.

OMNIRPC_CREATE_HANDLE

Name
OMNIRPC_CREATE_HANDLE — Execution of remote executable program

Synopsis
integer ihandle
character*(*) host_name, module_name

call OMNIRPC_CREATE_HANDLE(ihandle, host_name, module_name);

Description
Executes the remote executable program of the module specified as module_name, on the remote host
specified as host_name. It returns the corresponding ihandle. It calls functions on running remote
executable programs with OmniRpcCallByHandle. The host_name and module_name have "*" attached
to the hostname which is used or to the module. If the host_name has a "*", it selects the appropriate host
fro the registered modules, and executes the remote executable program of the module. If the host name
or module is incorrect, it sets ihandle as 0.

OMNIRPC_CALL_BY_HANDLE

Name
OMNIRPC_CALL_BY_HANDLE — Synchronous function call with OmniRpcHandle

68

Appendix D. OmniRPC API index

Synopsis
integer ihandle
character*(*) entry_name

call OMNIRPC_CALL_BY_HANDLE(ihandle, entry_name, ...);

Description
Calls entry_name function on the running remote executable program corresponding to the ihandle
created by OmniRpcCreateHandle. A "*" is added the the entry_name function name. It blocks the caller
thread until the end of the function call.

OMNIRPC_CALL_ASYNC_BY_HANDLE

Name
OMNIRPC_CALL_ASYNC_BY_HANDLE — Asynchronous call of function with OmniRpcHandle

Synopsis
integer ireq,ihandle
character*(*) entry_name

call OMNIRPC_CALL_ASYNC_BY_HANDLE(ireq, ihandle, entry_name, ...);

Description
Calls the entry_name function on the running remote executable program corresponding to the ihandle
created by OmniRpcCreateHandle. entry_name is a string which combines the function name and the "*"
character. Probes the end of the function and blocks control by using OMNIRPC_WAIT,
OMNIRPC_PROBE, OMNIRPC_WAIT_ALL, OMNIRPC_WAIT_ANY API, all of which are possible
whether the function end or not.

69

Appendix D. OmniRPC API index

OMNIRPC_DESTROY_HANDLE

Name
OMNIRPC_DESTROY_HANDLE — Termination of remote executable program by OmniRpcHandle

Synopsis
integer ihandle

call OMNIRPC_DESTROY_HANDLE(ihandle);

Description
Terminates running remote executable program corresponding to the ihandle which is created by
OmniRpcCreateHandle.

OMNIRPC_MODULE_INIT

Name
OMNIRPC_MODULE_INIT — Setting for module initialization

Synopsis
character*(*) module_name

call OMNIRPC_MODULE_INIT(module_name, ...);

70

Appendix D. OmniRPC API index

Description
Sets arguments for initialization of the module module_name. A "*" is added to module_name. The
"Initialize" function must be required in the module of the remote executable program. When the remote
executable programs of the modules are executed, it calls the "Initialize" function with set arguments.
This API is only set; actual initialization occurs when the remote executable program is executed.

71

Appendix E. FAQ

Q: Hostname of the client host cannot be accessed.

A: In the OmniRPC system, after the agent’s invocation, the program on the remote host requests access
to the client host. Therefore, it is necessary for the remote host to know the hostname which can be
accessed to the client host By default, the OmniRPC system uses the hostname through hostname
commands. But, in some settings, there may exits a hostname which cannot be accessed from an outside
network exists. You should set FQDN(Full Qualified Domain Name) by the hostname command or
environment variable OMRPC_HOSTNAME as FDQN.

(csh or tcsh)
% setenv OMRP_HOSTNAME FQDN

(bash)
$ export OMRP_HOSTNAME FQDN

There is the same problem in the Globus Toolkit environment. In this case, set the environmental variable
GLOBUS_HOSTNAME to FQDN. for more details, please see Globus information.

Q: Our cluster does not support RSH due to security reason.

A: Usually cluster nodes accept RSH, So, the agent can invoke the remote executable program on the
cluster nodes. But in some situations, the cluster nodes restrict the use of RSH and support SSH.
Therefore, you can use SSH to invoke remote executable programs. You should write explicitly to use
SSH. You can change the cluster nodes file (which is introduced in Use of a built-in round-robiin
scheduler) as below.

hpc1 ssh
hpc2 ssh
hpc3 ssh

If ssh is omitted in the above description, rsh is used.

Q: I use SSH both for agent invocation and for worker invocation when I want to use clusters. But An
error has occured when invocation of workers.

A: It seems that authentications between OmniRPC agent and worker program are failed. Because
OmniRPC agent cannot use the ssh-agent’s pass-phrase in which client program runs. As result, when
OmniRPC agent uses ssh to invoke worker program in cluster nodes, authentication between agent and
worker program is failed. Easy way to solve this issue is to add ssh option in ".ssh/config" as follows.

ForwardAgent yes

72

Appendix E. FAQ

Q: After I lunched the client program, client program exits with like bellow message.

OMRPC_FATAL(localhost:./[programname]): omrpc_io_accept: time out

A: Authentication phase sometimes takes more than 15 seconds when client program invokes OmniRPC
agent in remote nodes. OmniRPC’s default timeout is 15 seconds. If you want increase this number,
please set the TimeOut element in hostfile like bellow example.

<?xml version="1.0" ?>
<OmniRpcConfig>

<Host name="jones.is.tsukuba.ac.jp">
<TimeOut second="20">

</OmniRpcConfig>

73

