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working with sequential ones and then by �nding a ode reuse sheme whihenables the appliation developer to use either the sequential objets or theirparallel ounterpart. In the domain of linear algebra, the family of Krylovsubspae methods allows to solve either eigenproblems [16℄ or linear systems[17℄. These methods share many properties and are good andidates to odereuse and parallelization.In setion 1, we present the blok Arnoldi method as a partiular ase ofblok Krylov methods and reall the usual way to parallelize suh a method.We list their needed elementary operations for either a sequential or a parallelimplementation. In setion 2, we �rst develop our goals in terms of ode reuseand then present di�erent design solutions with illustrative implementation inC++. We show the limit of polymorphism and dynami binding as a reuseshemewhen ompared to generiity. Finally setion 4 presents some numerialexperiments.1 The Blok Krylov MethodsThe orthogonal projetion methods are often used to ompute a few eigenele-ments of a large sparse matrix A (may be noted A). They approximate reigenelements of A by those of a matrix of order m obtained by orthogonalprojetion onto a m-dimensional subspae Km;V of Rn with r � m� n. Thesemethods approximate a solution (�i; ui) of the eigenproblem:Au = �u; with A 2 Rn�n; � 2 C ; u 2 C n (1)by a pair �(m)i 2 C , y(m)i 2 Cm satisfying :(Hm � �(m)i I)y(m)i = 0 (2)where the m�m matrix Hm is de�ned by Hm = VHmAVm with Vm the n�mmatrix whose olumns are an orthogonal basis of Km;V , VHm the onjugatetranspose of Vm and u(m)i = Vmy(m)i . Thus, in order to solve the problem (1),we �rst build an orthogonal basis of Km;V and then solve the problem (2).The ouple (�(m)i , u(m)i ) is an approximated solution of (1) and is alled apair of Ritz elements (Ritz value and Ritz vetor) of A on the subspae Km;V .A Krylov subspae method is a one for whih Km;V is de�ned by Km;V =Span(V;AV; � � � ; Am�1V ) where V is spanned by a set fv1; � � � ; vsg of initialguesses. Among these methods the Blok Krylov subspae methods ome fromthe hoie s > 1. 2



In general, the auray of the omputed Ritz elements is not satisfatory. Inorder to obtain desired auray, the omputed Ritz vetors will be used tobuild a new set of initial guesses. This set of vetors is used to restart theabove proess in the iterative version of the projetion method. The readeran �nd some restarting strategies in [16,17,21℄.In this paper we onsider a partiular ase of the blok Krylov subspae meth-ods alled the iterative blok Arnoldi method to ompute some Ritz elementsof a large non-symmetrial sparse matrix. This method is a blok version of theiterative Arnoldi method (when s = 1) [16℄. We briey present the algorithmonstituting the method in the next setion and then analyze the elementaryoperations involved and their usual parallelization strategies.1.1 The Blok Arnoldi MethodThe blok Arnoldi method enables to �nd the eigenvalues whose multipliityis less or equal than the blok size s. This projetion method �rst reduesthe original matrix A into an upper blok Hessenberg matrix Hm using aBlok Arnoldi Proess. Let V1 be the orthonormal matrix whose olumns arev1; � � � ; vs. The blok Arnoldi proess, given by algorithm 1.1, generates a setof orthonormal matries V1; � � �Vm.Algorithm 1.1 (Blok Arnoldi Proess [MGS version℄)Iterate: For j = 1; 2; : : : ;m(a) W = AVj(b) For i = 1; : : : ; jHij = V Hi WW = W � ViHijEnd For i() [Vj+1;Hj+1;j℄ = QR(W )End For jThe Hi;j s-size matries omputed by this proess are the bloks of Hm. Theeigenvalues of this matrix approah some of A. When the Blok Arnoldi Pro-ess terminates, the matries Hm, A and Vm = [V1 : : : Vm℄ veri�es the BlokArnoldi Redution equation (3).AVm = VmHm + Vm+1Hm+1;mEHm (3)The Blok Arnoldi Proess is only one step (projetion step) of the iterative3



Blok Arnoldi method whose omplete algorithm is given by algorithm 1.2,where Vm is the n�m � s-size matrix whose blok of olumns are V1; : : : ; Vm.Algorithm 1.2 (Iterative Blok Arnoldi Method)1) Initialization:Choose r the number of wanted eigenvalues and m the sizeof the Blok Krylov subspae.2) Choose an orthogonal starting matrix V1 of size n� s.3) Iterate:(a) Projetion step: exeute a Blok Arnoldi Proess withalgorithm 1.1. This step produes the Arnoldi redution equation (3).(b) Ritz omputation step, ompute:- the eigenelements (�(m)i ; y(m)i ) of Hm,- the r wanted Ritz elements (�(m)i ; u(m)i ) of A.() ompute the norm of the residuals of the wanted Ritz elements.(d) ompute a stopping riteria(e) restart the method� go to step 2) with a new matrix if expliit restart is used� update Arnoldi redution and go to 3.a) if impliit restart is used1.2 Elementary Operations and ParallelizationWe must mention that all the Krylov subspae methods share many prop-erties suh as using BLAS operations on sparse and/or dense matries andmay support di�erent kind of restart during the iterative proess . . . Thus aareful modular design of the blok Arnoldi method for eigenvalue problemsmay enable a lot of ode reuse for building for example a GMRES solver [18℄or easy variation of restart strategies. Moreover with a good design, iterativemethods should be parallelized easily and most of the sequential ode diretlyreused. Our target parallel mahines are distributed memory arhitetureswhih ould be either a superomputer or any luster. In this ontext, thelassial way to parallelize Krylov subspae iterative methods is to distributethe large vetors and/or matries and repliate the small ones on the pro-essors. Then we deompose and distribute all the matries of size n, that isthe n � n sparse matrix A, Krylov subspae basis Vm of size n � m � s andpossibly the temporary variables like W of algorithm 1.1. But the matrix Hmand all the m-sized matries used in step 3.b) algorithm 1.2 are repliated on4



proessors. From a design point of view it should be interesting to enapsulateparallel ode in a basi parallel matrix lass whih has the same interfae asthe sequential one and implement the iterative method using those matrixlasses. We will further develop this aspet in setion 2.We list hereafter the neessary elementary operations used by iterative meth-ods. We reall that the Blok Arnoldi Method is representative of Krylovsubspae methods for the neessary elementary operations. From algorithms1.1 and 1.2 and our parallelization strategy we may summarize those require-ments as following (for m;n; p 2 N) :(1) algebrai operations(a) Full Matrix SAXPY: Y = �X+�Y with Y;X 2 Rm�n and �; � 2 R.The matries may be distributed.(b) Full Matrix Produt: Y = �A �X + �Y with Y 2 Rm�p, A 2 Rm�n,X 2 Rn�p and �; � 2 R. The matries may be distributed.() Sparse Matrix by Full Matrix produt: Y = �A�X with X;Y 2 Rn�pand A 2 Rn�n, A is sparse. These matriesmay be distributed and Amay be available only as a funtion whih performs matrix produt.(2) sub-ranging or aliasing(a) sub-ranging: Y = A(i1 : i2; j1 : j2), with A 2 Rm�n and Y 2R(i2�i1+1)�(j2�j1+1). The Matries may be distributed.(b) point addressing: A(i; j) = � with A 2 Rm�n and � 2 R. Thisoperation is authorized only on full matrix.(3) memory alloation(a) alloate, dealloate and (re-)distribute A 2 Rm�n.2 Designing a Reusable SoftwareThe blok Arnoldi method presented in the previous setion led us to designa lass library alled LAKe (Linear Algebra Kernels). The main goal of thislibrary is the use of the same ode for the sequential and parallel versionof the iterative methods. In that way we only maintain a single ode whihis not luttered with unreadable parallel ode. The following setions willdemonstrate how to ahieve this goal. We �rst present the sequential designof LAKe, then we explain why polymorphism and dynami binding are notsuÆient to reah our goal. We �nally demonstrate how generiity is the keyof the solution. We point out that our design is the �rst one to reah suh areuse goal. 5
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Dynamic Client Static ClientInheritance (Is-a) Fig. 1. The LAKe arhiteture2.1 LAKe ArhitetureThe LAKe arhiteture is presented in �gure 1. Eah box represents a lass,whose features have been omitted for the sake of larity. Boxes are linked byarrows whih desribe the relation between the lasses. Plain arrows standfor inheritane or the is-a relation [13, p. 811℄. Eah lass name reall therole it play in algo. 1.1 and 1.2, for example the Itmethod lass representsan abstrat iterative method while the Arnoldi lass implements the BlokArnoldi Proess from algo. 1.1. Thus Arnoldi lass inherits from Itmethodsine Arnoldi is an iterative method. This means that eah feature de�nedin Itmethod will be a feature of Arnoldi too. Dashed arrows represent thelient relation. A lass A is a lient of another lass B if it uses at leastan objet of type B. The Arnoldi EV lass implements the Iterative BlokArnoldi Method desribed in algo. 1.2 then it uses the Arnoldi lass. Thelient relation is dynami if the relation is established at runtime and is statiif it may be established at ompile time. As an example the Arnoldi EV lassis a dynami lient of the Restart whose daughter lasses Impliit Restartand Expliit Restart implement varying strategies of restart.Polymorphism [13, p. 28℄ is the uniform handling of di�erent objets whihshare some parts of their interfae (for example by inheriting from the samebase lass). Polymorphism assoiated with dynami binding [13, p. 29℄ enablesthe polymorphially handled objet to at di�erently at runtime. Dynamibinding may be illustrated by the Arnoldi EV lass whih uses (is a dynamilient of) Arnoldi, but at runtime Arnoldi EVmay use an ABR Arnoldi (algo-rithmi modi�ation of Arnoldi in order to handle varying blok size) objettransparently. 6



2.2 A Weakness of Polymorphism: ContravarianePolymorphism seems an obvious way to parallelize iterative methods with-out touhing the ode. Eah iterative method is a lient of the Matrix lasswhih implements all the operations desribed in x1.2. We only need to builda DMatrix lass that is derived from Matrix whih rede�nes the needed fea-tures in order to have a parallel implementation. Our iterative methods willthen use the distributed matrix lass DMatrix polymorphially, whih meanswithout modifying the ode of the iterative method itself. We will now showwhy polymorphism is not suÆient to reah our aim. The problem in objet-oriented language is the impliit assumption that inheritane de�nes a subtyperelation. The following de�nition spei�es the notion of subtype:De�nition 1 (Subtype) A type T 0 is a subtype of type T , also noted T 0 � Ti� every funtion that expets an argument of type T may take an argumentof type T 0.Contravariane omes out when trying to subtype funtions. The idea wemust keep in mind when trying to subtype funtions is: g is a subtype of f i�everywhere f is expeted one may use g. The rule for funtion sub-typing isgiven in de�nition 2. This result is not so natural and detailed examples andtheoretial referenes may be found in [10℄.De�nition 2 (Contravariane) Let TA ! TR be the type of a funtiontaking an argument of type TA and returning an argument of type TR. Thesubtype rule for funtions is: TA0 ! TR0 � TA ! TR i� TR0 � TR andTA � TA0. We say that the output type of a funtion is ovariant sine itvaries in the same way the type of the funtion does, but the type of the inputarguments is ontravariant sine the subtype relation is inverted.In the following \A::" pre�x means that the feature is de�ned in lass A. Theontravariane problem arises at step b) of algorithm 1.1 when we need toperform the algebrai operation Hij = V Hi W on the distributed matries Viand W . Let TA be Matrix and TB be DMatrix a subtype of TA. The operationis performed by a all to the method TA::tmatmul(TA*,TA*) whih has beenrede�ned in the distributed matrix lass as TB::tmatmul(TB*,TB*). The all isshown at line 5{6 of �gure 2. At this point the wrong method is alled beausethe subtype relation on funtions implies that TB::tmatmul(TB*,TB*) is nota subtype of TA::tmatmul(TA*,TA*) sine the inputs arguments must beontravariant.The only proper method rede�nition is: TB::tmatmul(TA*, TA*). Thus thetype of the arguments must be heked dynamially. This proess is alleddispath of the arguments: single, double and multiple dispath when doing itfor one, two or more arguments. The multiple dispath problem is a lassial7



1 Arnoldi::gsloop(int jbeg, int jend) {2 [...℄3 W_ = V1_.opy();4 [...℄5 // all to Matrix::tmatmul(Matrix*,Matrix*)6 Hij_->tmatmul(Vi_,W_);7 [...℄8 } Fig. 2. Bad dispath allOO problem and has been solved in the past. It is generally not integrated inOO languages sine it is ostly. It was notied and solved in the same linearalgebra ontext by F. Guide in [9, pp. 96{99℄ for the Paladin linear algebralibrary. His solution relies on �nding the dynami type of eah argument ofthe onerned funtion by using dynami type ontrol.We propose an improved solution as a design pattern alled Servie Pattern. Ithas two advantages over the Paladin solution: the dispath of an argument isonly done when it hanges and the dispath may be done for several operationsusing the same arguments.Remark 3 (Wrong Design) One may argue that the problem omes frommisoneption in the Matrix lass. Providing a low level interfae, like point-wise aess A(i; j) to both Matrix and DMatrix would enable the implemen-tation of tmatmul operation in Matrix and its reuse in DMatrix. This wouldbe very ineÆient in parallel environment sine it would generate one messagefor eah element aess.Remark 4 (Anhored type) Some languages like Ei�el o�er another solu-tion to the ontravariane problem: anhored type. A variable has an anhoredtype if its type is spei�ed to be like another type whih may be urrently de-�ned. This authorizes ovariant rede�nition of member method. We do notonsider this solution sine C++, our target language, does not support it.Moreover anhored types have their own drawbaks [13, pp. 621{642℄.2.3 Servie Pattern SolutionThe Servie Pattern rei�es the method whih must dispath its argument:the Matrix::matmul method beomes a Matmul Operator servie lass. TheServie pattern is inspired from the Visitor Pattern [7, p. 331℄, and it an useeither dynami type ontrol or the visitor pattern to dispath the argument.The Servie Pattern represents a set of operations whih register (or onnet)their arguments one by one. The servie has an internal state whih spei�eswhih operations may be alled on the servie. Eah operation o�ered by the8



1 // Delaration2 Matrix *A, *B, *C; // pointer to matrix objets3 Matrix *Q, *R, *X; // pointer to matrix objets4 DMatmul_Operator Matmul; // a distributed Matrix Multipliation servie5 QRF QRFizer; // a QR fatorizer servie objet6 int rank;78 // polymorphi assignment9 A = new DMatrix(); B = new DMatrix(); C = new DMatrix();10 Q = new Matrix(); R = new Matrix(); X = new Matrix();11 [...℄12 // Compute A = B * C13 Matmul.onnet(A,"Y"); // register A as "Y"14 Matmul.onnet(B,"A"); // register B as "A"15 Matmul.onnet(C,"X"); // register C as "X"16 Matmul.matmul(); // ompute A = B * C17 // Compute C = B^{T} * A18 Matmul.disonnet("Y"); Matmul.onnet(C,"Y");19 Matmul.disonnet("X"); Matmul.onnet(A,"X");20 Matmul.tmatmul(); // ompute C = B^{T} * A21 Matmul.disonnet();22 [...℄23 // Compute QR fatorization of X24 QRFizer.onnet(X); // register X as the default argument25 QRFizer.fatorize();26 QRFizer.get_R(R); // get the R fator of QR fatorize27 rank = QRFizer.rank(); // get the rank of QR fatorization28 QRFizer.ompute_Q(); // ompute Q fator whih overrides X29 QRFizer.disonnet();Fig. 3. Examples of LAKe Serviesservie will hek this internal state and raise an error if the servie is not in aonvenient state to serve this operation. This means that at runtime a methodof the servie an be alled if the state of the servie objet authorizes it. Twoexamples whih illustrate the use of servies are shown on �gure 3. The �rstone is the DMatmul Operator servie whih performs the task Y = A �X ondistributed matries DMatrix and the other is QRF a QR Fatorizer serviewhih performs several tasks related to the QR fatorization [2,8℄ of Matrix.An example of use of the state of the servie is the all to int QRF::rank()method at line 27 of �g. 3, at this point the QRF servie will hek if the QRfatorization is already omputed and raise an error if not.The advantages of the Servie Pattern (ompared to the solution adoptedin Paladin) are that the related operations are grouped together in an ob-jet o�ering a omplete servie, and that the arguments are dispathed only9



when needed. The only drawbak is the unusual syntax whih an be furtherimproved by authorizing impliit onnetion/disonnetion. For example if pa-rameter ``A'' of matmul doesn't hange a all to Matmul.apply(X,Y) wouldtrigger a X and Y onnetion, a all to matmul() and a X and Y disonnetion.The Servie Pattern may be implemented with any objet-oriented languageproviding dynami type ontrol, but we must mention that the same spirit ofservie is used in the Fortran 77 Reverse Communiation mehanism [4℄. Itis not surprising that the main goal of Reverse Communiation is to abstrataway from iterative method ode some matrix/vetor operations.The partiipants of the pattern are: a Servie lass, a base Objet lass andas many desendants of Objet as needed. The Objet lass has no require-ment other than having type information provided for it 1 . In the followingparm name stands for the name of the argument of the servie, typially ``A'',``X'', ``Y'' in �g. 3 whih represents the role the arguments play for theMatmul Operator servie. The Servie lass must provide:� one rede�nable method onnet(Objet* O, har* parm name)whih �ndsthe dynami type of O and alls the speialized method orresponding to thespei�ed parm name. This method should be rede�ned by the desendant ofthe servie to handle the onerned types,� one method onnet PARM NAME(DType* O) for eah parm namewhih makessense for the servie and for eah dynami type DType aepted for this pa-rameter. The all to suh a method will register the objet into the servieand update the state of the servie,� one rede�nable method disonnet(har* par name) whih unregistersthe spei�ed parameter(s) and update the servie state,� one method do task() for eah omputational task o�ered by the servie.The servie may have several methods of this kind. The servie should hekits state in order to see if it an answer to the do task() alls. As an examplethe QRF servie has the following omputational task:� void fatorize(): omputes the QR fatorization in ompressed form,state ondition: matrix to be fatorized should be onneted� void get R(Matrix*): retrieves the R fator,state ondition: fatorization should have been omputed by fatorize()and Q fator should not have been formed,� int rank(): returns the rank of the omputed fatorization,state ondition: fatorization should have been omputed by fatorize()and Q fator should not have been formed� void ompute Q(): expliitly forms Q fator,state ondition: fatorization should have been omputed by fatorize()� a spei�ation of the poliy of the servie whih explains how the operationsof the servie should be alled, ordered or not, how many parameters must1 In C++ this translates into having at least 1 non pure virtual method10
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Fig. 4. Iterative methods interfaebe registered for eah task. . .The multiple dispath problem is solved but we still not ful�ll all the onditionsfor a full reuse of iterative methods ode. The preeding tehnique works forall the operations listed in x1.2 but the memory alloation. We explain thereason and the solution in the next setion.2.4 The Need of GeneriitySome lasses or funtions of LAKe must be able to alloate matries whosesize depends on input parameters of theses lasses or funtions. As an exam-ple the Arnoldi lass shown in �gure 4 must be able to alloate the blokHessenberg matrix H and the matrix of the Krylov subspae basis V. Thedimensions of H and V an be dedued from two parameters needed to reatean Arnoldi objet: the Krylov subspae size m and the matrix V1 2 Rn�s(named Itmethod::x0 on Fig. 4). Algorithm 1.1 implies H 2 R(m+1)s�ms andV 2 Rn�(m+1)s.In a sequential ontext this is not a problem sine the Matrix used by Arnoldimust have a method to reate any retangular matrix. Now in a parallel on-text V1 is distributed whih implies that V should be distributed and H isusually not distributed (see x1.2) but the Arnoldi lass has no way to allo-ate distributed matries. In fat, it does not need to know if the matries ituses are distributed or not. There is a simple solution to this problem: makeall distributed objet parameters of the Arnoldi lass. Then H and V are nowparameters for reating an Arnoldi objet. We must add to this list the tem-porary variable W of algorithm 1.1. It must be distributed too beause it is11



involved in algebrai operations with distributed matries. Finally to reatean Arnoldi objet, all the matries must be passed as parameters. We havemade a big step bakwards sine our lass has the same struture as a Fortransubroutine: it requires input/output parameters and workspae!Remark 5 (Classes or Funtions) It may seem a better hoie to make theArnoldi lass a funtion as it is done in IML++ [5℄ or ITL [20℄. We are on-vined this is not a good hoie sine our goal is reusing the ode implementingthe Arnoldi algorithm. In fat if Arnoldi were a funtion every Arnoldi lientwould alloates the H, V and W matries before using the funtion. If thislient were given V1 and m as parameters, like Arnoldi EV is, he would re-quire to be given H, V and W too in order to be able to forward them to its ownArnoldi funtion. In the end every related iterative method would beome fun-tions, eah of them requiring several prealloated matries arguments inludingworkspae like W . Workspae is really needed sine the iterative method doesnot know it uses distributed matries. This approah breaks enapsulation sinelients of Arnoldi should provide Arnoldi's private data and workspae. This isagainst reuse too sine no lient an polymorphially use a speialized Arnoldifuntion.Another solution is to use the Servie Pattern or the Abstrat Fatory [7,pages 87{95℄ and/or Fatory Method [7, pages 107-116℄ patterns to design aMatrix Alloator servie and pass it as parameters of Arnoldi, but it wouldmake the ode of Arnoldi uglier whih is just what we want to avoid. Theonept that solves all the issues is generiity.De�nition 6 (Generiity) Generiity is the ability to parameterize a lasswith a type. We note the generi lass A<TB> where the lass A is parameterizedby the formal generi type parameter TB.A lassial example of the use of generiity is the Container<TElem> whihde�nes a Container whose elements are of type TElem. To use this lass withelements of type double we need to instantiate it with the atual type param-eter: Container<double>. Coneptually, the ompiler will take the ode ofthe generi lass and try to substitute the formal generi parameter with theatual one. This means that at ompile time the generi instantiation reatesa new lass whih represents a new type. This ompile-time new type reationremoves the ontravariane problem. While writing the ode of the methodsof the generi lass we impliitly assume that the formal generi parameterhas some properties 2 like having the +, �, � and = operators. We an requirestronger onstraints on the generi parameter sine it may be a lass on whihwe assume a given interfae. If an atual type or lass AT ful�lls the onstraintsof the formal generi parameter T we say that AT onforms to T.2 This may be expressed by some languages like Ada as onstrained generiity12



The solution to the distributed alloation problem is to parameterize the ma-trix lass with an opaque type TShape that gives informations about the shapeof the matrix.3 Shaped Matrix and Matrix ShapeIn this setion we explain the notion of Shaped Matrix and Matrix Shape andwe give examples whih illustrate their usefulness.De�nition 7 (Shaped Matrix) A Shaped Matrix is a generi type of ma-trix, noted Matrix<TShape> in whih the formal generi parameter TShapemust onform to the spei�ation of a Matrix Shape. The only neessary ar-gument to reate a Shaped Matrix objet is a Matrix Shape of type TShape.A Shaped Matrix should be able to give the type of its Matrix Shape and aMatrix Shape objet of this type representing its urrent shape.Before we go on with Shaped Matrix we present the spei�ation of a MatrixShape.3.1 Matrix ShapeA Matrix Shape is a type whih has several requirements. It furnishes theminimal set of operations and funtions to make strutural alulation onmatries, that is every (elementary) operation that an be done on a matrixan be done on a matrix shape. A Matrix Shape is a kind of rei�ation of theAbstrat Data Type matrix as spei�ed by the elementary operations givenin x1.2. The neessary operations on a Matrix Shape falls into 3 ategories:(1) Creator/Destrutor(2) Logial Operations(3) Algebrai OperationsThe funtions of eah ategory are shown in tables 1, 2, 3.Now that the spei�ation of a Matrix Shape is omplete, we will show its usein the design of a Shaped Matrix. 13



Table 1Creator/Destrutor Operations on Matrix Shapereate() : 2! TShapeDefault reation. This funtion reates an invalid shape. After this reation thevalidity hek would answer that the shape is invalid.destroy(S) : TShape! TShapeDestroys a shape. This funtion destroys a shape, and makes it invalid. Afterthis the validity hek would answer that the shape is invalid.reate(m,n) : int; int! TShapeCreates the default shape for a m� n matrix.reate(S) : TShape! TShapeCreates a opy of a shape S.row shape(S) : TShape! TShapeCreates a 1-row shape with the same olumn shape as S. The number of rows ofthe reated shape is 1 and the number of olumns is the same as S. If S representsan m� n matrix then the resulting shape would represent an 1� n matrix.olumn shape(S) : TShape! TShapeCreates a 1-olumn shape with the same olumn shape as S. The number ofolumns of the reated shape is 1 and the number of rows is the same as S. If Srepresents an m � n matrix then the resulting shape would represent an m � 1matrix.sub shape(S,I1,I2) : TShape; Index; Index! TShapeCreates a shape whih is the sub-shape of S ranging from index I1 to index I2.The type of the indexes I1 and I2 are unspei�ed here. Typially an index I shouldbe a pair (i; j) if we are interested in ontiguous sub-shape, a triplet (i; j; s) ifwe are interested in non ontiguous (slie) sub-shape or any user de�ned index(for example blok index).expand shape(S,m,n) : TShape; int; int! TShapeCreates a shape whih is the same as S with m times more rows and n times moreolumns. If S represents an p� q matrix the resulting shape would represent anp �m� q � n matrix.3.2 Shaped MatrixFrom Def. 7 we know that a Shaped Matrix has a formal generi parameterTShape onforming to a Matrix Shape. The funtional requirement of a ShapedMatrix onforming to the type Matrix<TShape> are:14



Table 2Logial Operations on Matrix Shape!S : TShape! booleanInvalidity heking. The funtion heks if the shape is valid, and return true ifthe shape is invalid. A shape may be invalid if a previous operation produed aninvalid result.S1==S2 : TShape; TShape! booleanStrit equality. The funtion returns true if S1 is stritly equal to S2.S1 is assignable to S2(S1,S2) : TShape; TShape! booleanThe funtion heks if we may assign a shape S1 to a shape S2 and returns true ifit is possible and false otherwise. Note that this may be the same as strit equalitybut this is not mandatory. In the ontext of parallel shape S1 may be assignableto S2 even if S1 is not stritly equal to S2, for example if S1 is dupliated andS2 is not.Table 3Algebrai Operations on Matrix Shapenrow(S) : TShape! intNumber of rows of the shape. This represents the number of rows of the matrix.nolumn(S) : TShape! intNumber of olumns of the shape. This represents the number of rows of thematrix.transpose(S) : TShape! TShapeMatrix Transposition. This funtions returns the shape orresponding to thetransposed matrix. The resulting shape may be invalid if this kind of shape doesnot support transposition.S1+S2 : TShape; TShape! TShapeMatrix Addition. This funtions returns the shape orresponding to the additionof matries whose shape are S1 and S2. The resulting shape may be invalid ifthe addition of the 2 matries is not omputable.S1*S2 : TShape; TShape! TShapeMatrix Produt. This funtions returns the shape orresponding to the produtof matries whose shape are S1 and S2. The resulting shape may be invalid ifthe produt of the 2 matries is not omputable.(1) the only neessary information to reate (alloate) a Matrix<TShape> isan objet of type TShape,(2) a Matrix<TShape> must be able to give its urrent shape, i.e. an objetof type TShape,(3) a Matrix<TShape> must be able to provide the type of its shape, noted15



1 // TMatrix is the type of Shaped Matrix used by Arnoldi2 [...℄3 TMatrix::shape_type SW;4 SW = (SMatmul.shape()*x0.shape());5 #ifdef _LAKE_CHECK6 if (!SW)7 {8 error("Invalid Sparse Matrix Vetor Multiply");9 error(SW.invalid_info()); // print invalid_info string of SW10 }11 #endif12 // alloate W whose shape is the produt of13 // SMatmul and x0 shapes.14 W.reate((SMatmul.shape())*(x0.shape()));1516 TMatrix::shape_type Sx0;17 Sx0 = x0.shape();18 bV.reate(Sx0.expand_shape(1,max_it()+1));19 TMatrix::shape_type Sx0t;20 Sx0t = Sx0;21 Sx0t.transpose();22 // alloate bH whose shape is the shape of23 // x0^{T} times x0 expanded max_it()+1 times along the rows24 // and max_it() times along the olumns.25 bH.reate((Sx0t*Sx0).expand_shape(max_it()+1,max_it()));Fig. 5. Using shape for alloating matriesMatrix<TShape>::shape type.Note that even if we note a Shaped Matrix Matrix<TShape> it may be ANYuser de�ned type whih onforms to Matrix<TShape>.The piee of ode of the Arnoldi lass in �gure 5 illustrates the use of shape foralloating H, V andW . At line 1{14 we reateW whose shape is the produt ofmatmul operator shape and x0 shape. At line 16{18 we de�ne V whose shapeis the shape of x0 expanded along the olumns m+1 times. Finally at line 19{25 we reate the H blok Hessenberg matrix whose shape is the shape of xT0 x0dupliated m times along the olumns and m+1 times along the rows. At line3,16 and 19 we use the embedded shape type: TMatrix::shape type. Lines5{11 show an example of the use of the Matrix Shape for guard ondition, thevalidity of the produt is heked on the shape before any produt ourred.One may argue that we ould have made the shape mehanism work diretlyon matrix objet. If we had given the operator* the matrix multipliationsemanti we would have had to handle temporaries generated by this operators16



1 int2 main(int arg, har* argv[℄)3 {4 // initialize LAKe5 LAKELL.Initialize(arg,argv);6 // retrieve the number of proessors7 onst int n_proessors = Lakell::LAKE_COMM_WORLD.Size();8 [...℄9 // delare a distributed matrix whose shape is a Distribution10 Matrix<Distribution> x0;11 Distribution Dx0; // a Distribution objet12 int n_rows = 10000;13 int n_olumns = 5;1415 // reate a row yli distribution for a16 // matrix with n_rows and n_olumns17 Dx0.reate_row_yli(n_rows,n_olumns,n_proessors);18 // alloate the distributed matrix x019 x0.reate(Dx0);2021 [...℄22 // pass x0 as parameter to Arnoldi ...23 [...℄24 } Fig. 6. Distributing matries in the main programwhih is something triky [23℄ we were not interested in. Otherwise we shouldhave de�ned algebrai operators that do not have their usual sense. Sine shapeobjets are small objets we may aept some temporaries due to operators,moreover temporaries optimization may be added later.The example of �g. 5 shows how a lient of a Shaped Matrix may alloatematries whose shape an be omputed from matries arguments passed tothe lient. In our example the lient is the Arnoldi lass whih has been giventhe matrix parameter x0 and the size of the Krylov subspae m (given by themax it() method). Now alloation of the (eventually) distributed matries inArnoldi omes from the fats that (1) x0 is a distributed matrix and (2) thealgebrai rules of omputation on shapes ditate how to reate (eventually)distributed shape from x0's shape. The shape mehanism does not preventthe user to initially distribute himself the parameters in the main program.In order to reate a distributed matrix x0 in the main program the user ouldhave written something similar to the ode presented in �gure 6.The methods used to reate distributed shape are NOT part of the standardshape spei�ations. Every parallel matrix shape designer will give its own17



failities for building distributed shapes, along with the spei�ed operations(see tables 1,2,3) on shape. In this way, only the main program would haveto be hanged for swapping from one parallel shaped matrix lass to another.In this way matrix shape designers do not need to implements all possibledistributions shemes but only the ones that are useful for their appliations.The only onstraint for a matrix shape lass is to implement the spei�edstandard shape operations.3.2.1 Generiity solves ContravarianeWe have just seen how the Shaped Matrix mehanism solves the distributedalloation problem. It may not seem obvious that generiity is really neededin this ase, we may have made the Shaped Matrix lass a lient of an ab-strat Matrix Shape lass and derive onrete Matrix Shape for sequentialand parallel matrix lass. But the ontravariane problem would still be therein the Arnoldi lass as shown in �g. 2. This problem is solved if we makeMatrix a generi parameter of Arnoldi whih beomes Arnoldi<TMatrix>,where TMatrix should be a Shaped Matrix. Now when ompiling the Arnol-di<TMatrix>with an atual generi parameter Sequential Matrix or Paral-lel Matrix for TMatrix the ompiler will instantiate the right all to theTMatrix::tmatmul(TMatrix&, TMatrix&)at ompile time. Contravarianeis solved by generiity for all the Itmethod<TMatrix> lasses.We made the Shaped Matrix lass a generi lass Matrix<TShape> beause wewant to reuse the ode of the generi Matrix lass suh that Sequential Matrixis in fat Matrix<Sequential Shape> and Parallel Matrix is in fat Matrix-<Parallel Shape>. This is just what we have done in LAKe. It must be notedthat the Parallel Matrix lass is not equal to the Matrix<Parallel Shape>lass but it is derived from it. This last point is important sine we need toknow the exat shape of the matrix in order to implement Matrix<TShape>::-reate(TShape S) and all neessary elementary matrix operations from x1.2.Then Parallel Matrix rede�nes all the methods inherited from Matrix<Paral-lel Shape> that need to aess the interfae of Parallel Shape that is nota part of the Matrix Shape interfae.3.3 Advantages of Shaped MatrixWe must quote several advantages of Shaped Matries whih make the lientof a Shaped Matrix really independent of its implementations details.� A lient of Shaped Matrix may alloate temporaries without knowing howit is alloated, even in the distributed ase.18



� Operations on shape �x the rules for distributing the result of distributedoperations on matries.For example the result of the produt of a olumn-wise distributed matrixby a row-wise distributed matrix should be a dupliated matrix. Those rulesmay be hanged in the shape lass itself and may inuene the distributionof all matries, even the temporary storage used by iterative methods.If the distribution rules hange you won't need to hange any single line ofthe ode of the iterative method lass.� Shapes unify guard onditions for matrix operations.A method like Matrix::matmul(...) usually heks that its matriesarguments have the required dimensions to do matrix multipliation, thosemethods now use logial operators on the shape of the arguments. Whendoing Y = A �X we should have:S1 is assignable to S2(Y.shape(),A.shape()*X.shape()).When adding two (potentially) distributed matries A and B you mayhek that !(A.shape()+B.shape()). If A and B are not distributed in aompatible way, the sum of A and B shapes will be invalid.3.4 Compile Time vs Run Time PolymorphismGeneriity may be viewed as a ompile time polymorphism. Inheritane anddynami binding are the support for run time polymorphism whereas onfor-mane and generiity are the support for ompile time polymorphism. Equiv-alene between generiity and inheritane has already been disussed [13,19℄.A onlusion of these studies is that inheritane is a general purpose meha-nism that may easily emulate generiity 3 but the onverse is false. Generiityannot emulate inheritane but generiity is a powerful mean to handle self-referening.We think that both ompile time and run time polymorphism are useful andomplementary. A onvenient mean for us to hose between ompile time andrun time polymorphism is the notion of dynami and stati lient relation.De�nition 8 (Dynami/stati Client) A lass A is a lient of anotherlass B if A uses at least one objet of type B. The lient relation is dynamiif an objet of type A may use several lass inheriting from B at runtime. Thelient relation is stati if the type of the objet inheriting from B used by Adoes not hange during runtime.Then we reommend applying the following rule:3 This is the way Java supports generiity sine there is no built-in support forgeneriity in Java. But this may hange in the future [1℄.19



Remark 9 (Generiity hoie rule) If a lass A is a stati lient of lass Bmake the lass B be a generi parameter of lass A. If a A is a dynami lient ofB then the lient relation should be implemented using run time polymorphism.From the implementation point of view the Servie/Objet arhiteture ofthe Servie Pattern is made to fully support the dynami lient relation inwhih B is a servie for A. Conerning generiity the implementation will bestraightforward if the language fully supports generiity, on the ontrary pre-proessor or soure-to-soure ompiler may be used to support generiity 4 .Applying the Generiity hoie rule on the LAKe arhiteture of �gure 1 onpage 6 gives the following generi lasses:� Matrix<TShape,TCSC>� QRF<TMatrix>� EV<TMatrix>� Itmethod<TMatmul Operator,TMatrix>� Arnoldi<TMatmul Operator,TMatrix>� ABR Arnoldi<TMatmul Operator,TMatrix>Remark 10 (Other generi libraries) IML++ (Iterative Method Library)[5℄ and MTL/ITL (Matrix Template Library/Iterative Template Library) [20℄both de�ne generi iterative methods. LAKe handles issues whih are unre-solved in those libraries:(1) they have not been used with distributed matrix lasses. A parallel ex-tension of MTL alled PMTL is under development but at the time ofthe writing no tests have been done yet. Moreover it is not mentionedthat ITL omponents will be able to use PMTL omponent without anyhange.(2) the iterative methods are implemented as generi funtions and not lasses.This means that polymorphially reusing an Arnoldi proess was not a goalof those libraries.(3) the funtions implementing iterative methods annot handle the alloationof a distributed variable.The generi LAKe library ful�lls its requirements. The ode of the iterativemethods hierarhy is stritly the same when used with parallel or sequentialmatries. Iterative methods are really building bloks whih may hold andalloate their own data distributed or not. We reuse most of the ode ofthe sequential matrix to implement the distributed one. We pointed out amethodology for hoosing between run time and ompile time polymorphism.4 This remains to be experiened sine we used C++ whih fully supports generiity20



3.5 Related WorkTo go a step further with generiity we may borrow the idea behind the STL[14℄ also used in MTL whih is using iterators on matries in order to fator-ize generi algorithms like matrix addition or multipliation. This is urrentlyunder development and will enable us to have several speialized algorithmfor distributed matrix multipliation. In this study we will examine the linkbetween our design method and aspet-oriented programming [12℄ and gener-ative programming [3℄ whih are \natural" extensions to generiity.If we look at the Fortran-side of the sienti� omputing world we see atleast two relations. We have already pointed out the relation between theServie Pattern and reverse ommuniation, but we may also draw a paral-lel between matrix shape and the distribution diretive of HPF [11℄. In fatthe DISTRIBUTE, TEMPLATE, ALIGN diretive of HPF are ompiler instrutionsfor alloating distributed matries. The matrix shape plays the same role atruntime, so we may imagine a restruturing ompiler that is \matrix shape"aware to do some optimization at ompile time.4 Numerial ExperimentsWe have implemented the LAKe library in C++ and used MPI throughOOMPI [22℄ for the parallel lasses. We used blok Arnoldi method in orderto �nd the 10 eigenvalues of largest modulus. The parameters of algorithm 1.2were: r = 10, s = 4, m = 15. Iterations were stopped whenever the residualassoiated with the Ritz pair was less than 10�6. The �rst matrix (CRY2500)is taken from the matrix market (CRYSTAL set of the NEP olletion) andhas 2500 rows and 12349 entries. The seond matrix (RAEFSKY3) has 21200rows and 1488768 entries. The matries, stored in Compressed Sparse Column(CSC) format, were distributed blok olumn wise on the spei�ed number ofproessors. We did not pre-proessed the sparse matries with any graph par-titionner sine this was not a primary goal. Nevertheless we know that, thisreordering should have improved both parallel eÆieny and speed-up. Nu-merial experiments were done on the CRAY T3E of IDRIS 5 .Speed-up are shown in �gure 7. The solid line urve orresponds to theo-retial speed-up and the dashed urve to measured speed-up. The speed-uporresponding to RAEFSKY3 begins with 2 proessors sine the ode is unableto be run on one proessor. For CRY2500 a number of proessors NPE = 05 Institut du D�eveloppement et des Ressoures en Informatique Sienti�que, CNRS,Orsay, Frane 21
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Fig. 7. Speed-uporresponds to the sequential ode and NPE � 1 orresponds to the parallelone. The speed-up are good as long as the number of proessors is not toolarge in omparison with the size of the matrix. We note that the sequentialand parallel ode used for CRY2500 are derived from the same generi ode.This means that for a data set that �ts on a workstation we do not need torun the parallel version on one proessor but we instantiate the sequentialversion. A raw omparison with a Fortran 77 ode implementing the methodin a non-generi way showed that the Fortran ode was 2 times faster thanthe generi C++ one. We must note that the omparison is not fair sine theFortran 77 ode is far from implementing every feature implemented in theC++ version.ConlusionWe have presented how a oupled objet-oriented and generi design enablesthe development of the same ode for the sequential or parallel version of ourlinear algebra appliation. This is a key to parallel software maintenane andreuse. The basi idea is to parameterize the lass whih will beome parallelby its abstrat data type. We think the shaped matrix mehanism may beillustrative enough to give insight for other parallel appliations. Experimentshave shown that the same ode is working for both sequential and parallelversion with promising salability. We pointed out that both generiity andpolymorphism are useful. We think that our approah is to be related togenerative programming tehniques and that it is at the edge of ompilingtehnique. 22
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