
A Key for Reusable Parallel Linear AlgebraSoftwareEri
 Noulard a;b and Nahid Emad baSo
i�et�e ADULIS { 3, rue Ren�e Cassin { F-91742 Massy Cedex { Fran
ebUniversit�e de Versailles St-Quentin-en-Yvelines { Laboratoire PRiSM { BâtimentDes
artes { F-78035 Versailles Cedex { Fran
eAbstra
tWe propose an obje
t oriented design whi
h enables very good 
ode reuse for bothsequential and parallel linear algebra appli
ations. A linear algebra 
lass library
alled LAKe is implemented using our design method. We introdu
e a new reuseme
hanism 
alled matrix shape whi
h enables us to derive the implementation ofboth the sequential and the parallel version of the iterative methods of LAKe. Weshow that polymorphism is insuÆ
ient to a
hieve our goal and that both generi
ityand polymorphism are needed. We propose a new design pattern as a part of the so-lution. Some numeri
al experiments validate our approa
h and show that eÆ
ien
yis not sa
ri�ed.Key words: OO design, generi
ity, parallel and sequential 
ode reuse, Krylovsubspa
e methods.Introdu
tionIn the area of numeri
al 
omputing many people would like to use parallelma
hines in order to solve large problems. Parallel ma
hines like modest sizedSMPs or workstations 
lusters are be
oming more and more a�ordable, but noeasy way to program these ar
hite
tures is known today. A message passinglibrary like MPI[6℄ brings us a standard for parallel message passing program-ming. However 
ode written with MPI is hard to understand for non parallelprogramming experts and 
onsequently hard to maintain and reuse.In order to evaluate the obje
t oriented design as a mean to reuse most of thesequential and parallel software 
omponents we develop our previous study[15℄. This goal is rea
hed in two related steps, �rst by en
apsulating parallelismin su
h a way that the user may manipulate parallel obje
ts as if she/he werePreprint submitted to Elsevier Preprint 26 O
tober 2000



working with sequential ones and then by �nding a 
ode reuse s
heme whi
henables the appli
ation developer to use either the sequential obje
ts or theirparallel 
ounterpart. In the domain of linear algebra, the family of Krylovsubspa
e methods allows to solve either eigenproblems [16℄ or linear systems[17℄. These methods share many properties and are good 
andidates to 
odereuse and parallelization.In se
tion 1, we present the blo
k Arnoldi method as a parti
ular 
ase ofblo
k Krylov methods and re
all the usual way to parallelize su
h a method.We list their needed elementary operations for either a sequential or a parallelimplementation. In se
tion 2, we �rst develop our goals in terms of 
ode reuseand then present di�erent design solutions with illustrative implementation inC++. We show the limit of polymorphism and dynami
 binding as a reuses
hemewhen 
ompared to generi
ity. Finally se
tion 4 presents some numeri
alexperiments.1 The Blo
k Krylov MethodsThe orthogonal proje
tion methods are often used to 
ompute a few eigenele-ments of a large sparse matrix A (may be noted A). They approximate reigenelements of A by those of a matrix of order m obtained by orthogonalproje
tion onto a m-dimensional subspa
e Km;V of Rn with r � m� n. Thesemethods approximate a solution (�i; ui) of the eigenproblem:Au = �u; with A 2 Rn�n; � 2 C ; u 2 C n (1)by a pair �(m)i 2 C , y(m)i 2 Cm satisfying :(Hm � �(m)i I)y(m)i = 0 (2)where the m�m matrix Hm is de�ned by Hm = VHmAVm with Vm the n�mmatrix whose 
olumns are an orthogonal basis of Km;V , VHm the 
onjugatetranspose of Vm and u(m)i = Vmy(m)i . Thus, in order to solve the problem (1),we �rst build an orthogonal basis of Km;V and then solve the problem (2).The 
ouple (�(m)i , u(m)i ) is an approximated solution of (1) and is 
alled apair of Ritz elements (Ritz value and Ritz ve
tor) of A on the subspa
e Km;V .A Krylov subspa
e method is a one for whi
h Km;V is de�ned by Km;V =Span(V;AV; � � � ; Am�1V ) where V is spanned by a set fv1; � � � ; vsg of initialguesses. Among these methods the Blo
k Krylov subspa
e methods 
ome fromthe 
hoi
e s > 1. 2



In general, the a

ura
y of the 
omputed Ritz elements is not satisfa
tory. Inorder to obtain desired a

ura
y, the 
omputed Ritz ve
tors will be used tobuild a new set of initial guesses. This set of ve
tors is used to restart theabove pro
ess in the iterative version of the proje
tion method. The reader
an �nd some restarting strategies in [16,17,21℄.In this paper we 
onsider a parti
ular 
ase of the blo
k Krylov subspa
e meth-ods 
alled the iterative blo
k Arnoldi method to 
ompute some Ritz elementsof a large non-symmetri
al sparse matrix. This method is a blo
k version of theiterative Arnoldi method (when s = 1) [16℄. We brie
y present the algorithm
onstituting the method in the next se
tion and then analyze the elementaryoperations involved and their usual parallelization strategies.1.1 The Blo
k Arnoldi MethodThe blo
k Arnoldi method enables to �nd the eigenvalues whose multipli
ityis less or equal than the blo
k size s. This proje
tion method �rst redu
esthe original matrix A into an upper blo
k Hessenberg matrix Hm using aBlo
k Arnoldi Pro
ess. Let V1 be the orthonormal matrix whose 
olumns arev1; � � � ; vs. The blo
k Arnoldi pro
ess, given by algorithm 1.1, generates a setof orthonormal matri
es V1; � � �Vm.Algorithm 1.1 (Blo
k Arnoldi Pro
ess [MGS version℄)Iterate: For j = 1; 2; : : : ;m(a) W = AVj(b) For i = 1; : : : ; jHij = V Hi WW = W � ViHijEnd For i(
) [Vj+1;Hj+1;j℄ = QR(W )End For jThe Hi;j s-size matri
es 
omputed by this pro
ess are the blo
ks of Hm. Theeigenvalues of this matrix approa
h some of A. When the Blo
k Arnoldi Pro-
ess terminates, the matri
es Hm, A and Vm = [V1 : : : Vm℄ veri�es the Blo
kArnoldi Redu
tion equation (3).AVm = VmHm + Vm+1Hm+1;mEHm (3)The Blo
k Arnoldi Pro
ess is only one step (proje
tion step) of the iterative3



Blo
k Arnoldi method whose 
omplete algorithm is given by algorithm 1.2,where Vm is the n�m � s-size matrix whose blo
k of 
olumns are V1; : : : ; Vm.Algorithm 1.2 (Iterative Blo
k Arnoldi Method)1) Initialization:Choose r the number of wanted eigenvalues and m the sizeof the Blo
k Krylov subspa
e.2) Choose an orthogonal starting matrix V1 of size n� s.3) Iterate:(a) Proje
tion step: exe
ute a Blo
k Arnoldi Pro
ess withalgorithm 1.1. This step produ
es the Arnoldi redu
tion equation (3).(b) Ritz 
omputation step, 
ompute:- the eigenelements (�(m)i ; y(m)i ) of Hm,- the r wanted Ritz elements (�(m)i ; u(m)i ) of A.(
) 
ompute the norm of the residuals of the wanted Ritz elements.(d) 
ompute a stopping 
riteria(e) restart the method� go to step 2) with a new matrix if expli
it restart is used� update Arnoldi redu
tion and go to 3.a) if impli
it restart is used1.2 Elementary Operations and ParallelizationWe must mention that all the Krylov subspa
e methods share many prop-erties su
h as using BLAS operations on sparse and/or dense matri
es andmay support di�erent kind of restart during the iterative pro
ess . . . Thus a
areful modular design of the blo
k Arnoldi method for eigenvalue problemsmay enable a lot of 
ode reuse for building for example a GMRES solver [18℄or easy variation of restart strategies. Moreover with a good design, iterativemethods should be parallelized easily and most of the sequential 
ode dire
tlyreused. Our target parallel ma
hines are distributed memory ar
hite
tureswhi
h 
ould be either a super
omputer or any 
luster. In this 
ontext, the
lassi
al way to parallelize Krylov subspa
e iterative methods is to distributethe large ve
tors and/or matri
es and repli
ate the small ones on the pro-
essors. Then we de
ompose and distribute all the matri
es of size n, that isthe n � n sparse matrix A, Krylov subspa
e basis Vm of size n � m � s andpossibly the temporary variables like W of algorithm 1.1. But the matrix Hmand all the m-sized matri
es used in step 3.b) algorithm 1.2 are repli
ated on4



pro
essors. From a design point of view it should be interesting to en
apsulateparallel 
ode in a basi
 parallel matrix 
lass whi
h has the same interfa
e asthe sequential one and implement the iterative method using those matrix
lasses. We will further develop this aspe
t in se
tion 2.We list hereafter the ne
essary elementary operations used by iterative meth-ods. We re
all that the Blo
k Arnoldi Method is representative of Krylovsubspa
e methods for the ne
essary elementary operations. From algorithms1.1 and 1.2 and our parallelization strategy we may summarize those require-ments as following (for m;n; p 2 N) :(1) algebrai
 operations(a) Full Matrix SAXPY: Y = �X+�Y with Y;X 2 Rm�n and �; � 2 R.The matri
es may be distributed.(b) Full Matrix Produ
t: Y = �A �X + �Y with Y 2 Rm�p, A 2 Rm�n,X 2 Rn�p and �; � 2 R. The matri
es may be distributed.(
) Sparse Matrix by Full Matrix produ
t: Y = �A�X with X;Y 2 Rn�pand A 2 Rn�n, A is sparse. These matri
esmay be distributed and Amay be available only as a fun
tion whi
h performs matrix produ
t.(2) sub-ranging or aliasing(a) sub-ranging: Y = A(i1 : i2; j1 : j2), with A 2 Rm�n and Y 2R(i2�i1+1)�(j2�j1+1). The Matri
es may be distributed.(b) point addressing: A(i; j) = � with A 2 Rm�n and � 2 R. Thisoperation is authorized only on full matrix.(3) memory allo
ation(a) allo
ate, deallo
ate and (re-)distribute A 2 Rm�n.2 Designing a Reusable SoftwareThe blo
k Arnoldi method presented in the previous se
tion led us to designa 
lass library 
alled LAKe (Linear Algebra Kernels). The main goal of thislibrary is the use of the same 
ode for the sequential and parallel versionof the iterative methods. In that way we only maintain a single 
ode whi
his not 
luttered with unreadable parallel 
ode. The following se
tions willdemonstrate how to a
hieve this goal. We �rst present the sequential designof LAKe, then we explain why polymorphism and dynami
 binding are notsuÆ
ient to rea
h our goal. We �nally demonstrate how generi
ity is the keyof the solution. We point out that our design is the �rst one to rea
h su
h areuse goal. 5



Lake_Service {} Lake_Object {}

Implicit_Restart

QRF EV

MatrixCSC

Itmethod {}

Restart {}

Matmul_Operator

Arnoldi

Arnoldi_EV

Explicit_Restart ABR_Arnoldi

Dynamic Client Static ClientInheritance (Is-a) Fig. 1. The LAKe ar
hite
ture2.1 LAKe Ar
hite
tureThe LAKe ar
hite
ture is presented in �gure 1. Ea
h box represents a 
lass,whose features have been omitted for the sake of 
larity. Boxes are linked byarrows whi
h des
ribe the relation between the 
lasses. Plain arrows standfor inheritan
e or the is-a relation [13, p. 811℄. Ea
h 
lass name re
all therole it play in algo. 1.1 and 1.2, for example the Itmethod 
lass representsan abstra
t iterative method while the Arnoldi 
lass implements the Blo
kArnoldi Pro
ess from algo. 1.1. Thus Arnoldi 
lass inherits from Itmethodsin
e Arnoldi is an iterative method. This means that ea
h feature de�nedin Itmethod will be a feature of Arnoldi too. Dashed arrows represent the
lient relation. A 
lass A is a 
lient of another 
lass B if it uses at leastan obje
t of type B. The Arnoldi EV 
lass implements the Iterative Blo
kArnoldi Method des
ribed in algo. 1.2 then it uses the Arnoldi 
lass. The
lient relation is dynami
 if the relation is established at runtime and is stati
if it may be established at 
ompile time. As an example the Arnoldi EV 
lassis a dynami
 
lient of the Restart whose daughter 
lasses Impli
it Restartand Expli
it Restart implement varying strategies of restart.Polymorphism [13, p. 28℄ is the uniform handling of di�erent obje
ts whi
hshare some parts of their interfa
e (for example by inheriting from the samebase 
lass). Polymorphism asso
iated with dynami
 binding [13, p. 29℄ enablesthe polymorphi
ally handled obje
t to a
t di�erently at runtime. Dynami
binding may be illustrated by the Arnoldi EV 
lass whi
h uses (is a dynami

lient of) Arnoldi, but at runtime Arnoldi EVmay use an ABR Arnoldi (algo-rithmi
 modi�
ation of Arnoldi in order to handle varying blo
k size) obje
ttransparently. 6



2.2 A Weakness of Polymorphism: Contravarian
ePolymorphism seems an obvious way to parallelize iterative methods with-out tou
hing the 
ode. Ea
h iterative method is a 
lient of the Matrix 
lasswhi
h implements all the operations des
ribed in x1.2. We only need to builda DMatrix 
lass that is derived from Matrix whi
h rede�nes the needed fea-tures in order to have a parallel implementation. Our iterative methods willthen use the distributed matrix 
lass DMatrix polymorphi
ally, whi
h meanswithout modifying the 
ode of the iterative method itself. We will now showwhy polymorphism is not suÆ
ient to rea
h our aim. The problem in obje
t-oriented language is the impli
it assumption that inheritan
e de�nes a subtyperelation. The following de�nition spe
i�es the notion of subtype:De�nition 1 (Subtype) A type T 0 is a subtype of type T , also noted T 0 � Ti� every fun
tion that expe
ts an argument of type T may take an argumentof type T 0.Contravarian
e 
omes out when trying to subtype fun
tions. The idea wemust keep in mind when trying to subtype fun
tions is: g is a subtype of f i�everywhere f is expe
ted one may use g. The rule for fun
tion sub-typing isgiven in de�nition 2. This result is not so natural and detailed examples andtheoreti
al referen
es may be found in [10℄.De�nition 2 (Contravarian
e) Let TA ! TR be the type of a fun
tiontaking an argument of type TA and returning an argument of type TR. Thesubtype rule for fun
tions is: TA0 ! TR0 � TA ! TR i� TR0 � TR andTA � TA0. We say that the output type of a fun
tion is 
ovariant sin
e itvaries in the same way the type of the fun
tion does, but the type of the inputarguments is 
ontravariant sin
e the subtype relation is inverted.In the following \A::" pre�x means that the feature is de�ned in 
lass A. The
ontravarian
e problem arises at step b) of algorithm 1.1 when we need toperform the algebrai
 operation Hij = V Hi W on the distributed matri
es Viand W . Let TA be Matrix and TB be DMatrix a subtype of TA. The operationis performed by a 
all to the method TA::tmatmul(TA*,TA*) whi
h has beenrede�ned in the distributed matrix 
lass as TB::tmatmul(TB*,TB*). The 
all isshown at line 5{6 of �gure 2. At this point the wrong method is 
alled be
ausethe subtype relation on fun
tions implies that TB::tmatmul(TB*,TB*) is nota subtype of TA::tmatmul(TA*,TA*) sin
e the inputs arguments must be
ontravariant.The only proper method rede�nition is: TB::tmatmul(TA*, TA*). Thus thetype of the arguments must be 
he
ked dynami
ally. This pro
ess is 
alleddispat
h of the arguments: single, double and multiple dispat
h when doing itfor one, two or more arguments. The multiple dispat
h problem is a 
lassi
al7



1 Arnoldi::gsloop(int jbeg, int jend) {2 [...℄3 W_ = V1_.
opy();4 [...℄5 // 
all to Matrix::tmatmul(Matrix*,Matrix*)6 Hij_->tmatmul(Vi_,W_);7 [...℄8 } Fig. 2. Bad dispat
h 
allOO problem and has been solved in the past. It is generally not integrated inOO languages sin
e it is 
ostly. It was noti
ed and solved in the same linearalgebra 
ontext by F. Guide
 in [9, pp. 96{99℄ for the Paladin linear algebralibrary. His solution relies on �nding the dynami
 type of ea
h argument ofthe 
on
erned fun
tion by using dynami
 type 
ontrol.We propose an improved solution as a design pattern 
alled Servi
e Pattern. Ithas two advantages over the Paladin solution: the dispat
h of an argument isonly done when it 
hanges and the dispat
h may be done for several operationsusing the same arguments.Remark 3 (Wrong Design) One may argue that the problem 
omes frommis
on
eption in the Matrix 
lass. Providing a low level interfa
e, like point-wise a

ess A(i; j) to both Matrix and DMatrix would enable the implemen-tation of tmatmul operation in Matrix and its reuse in DMatrix. This wouldbe very ineÆ
ient in parallel environment sin
e it would generate one messagefor ea
h element a

ess.Remark 4 (An
hored type) Some languages like Ei�el o�er another solu-tion to the 
ontravarian
e problem: an
hored type. A variable has an an
horedtype if its type is spe
i�ed to be like another type whi
h may be 
urrently de-�ned. This authorizes 
ovariant rede�nition of member method. We do not
onsider this solution sin
e C++, our target language, does not support it.Moreover an
hored types have their own drawba
ks [13, pp. 621{642℄.2.3 Servi
e Pattern SolutionThe Servi
e Pattern rei�es the method whi
h must dispat
h its argument:the Matrix::matmul method be
omes a Matmul Operator servi
e 
lass. TheServi
e pattern is inspired from the Visitor Pattern [7, p. 331℄, and it 
an useeither dynami
 type 
ontrol or the visitor pattern to dispat
h the argument.The Servi
e Pattern represents a set of operations whi
h register (or 
onne
t)their arguments one by one. The servi
e has an internal state whi
h spe
i�eswhi
h operations may be 
alled on the servi
e. Ea
h operation o�ered by the8



1 // De
laration2 Matrix *A, *B, *C; // pointer to matrix obje
ts3 Matrix *Q, *R, *X; // pointer to matrix obje
ts4 DMatmul_Operator Matmul; // a distributed Matrix Multipli
ation servi
e5 QRF QRFizer; // a QR fa
torizer servi
e obje
t6 int rank;78 // polymorphi
 assignment9 A = new DMatrix(); B = new DMatrix(); C = new DMatrix();10 Q = new Matrix(); R = new Matrix(); X = new Matrix();11 [...℄12 // Compute A = B * C13 Matmul.
onne
t(A,"Y"); // register A as "Y"14 Matmul.
onne
t(B,"A"); // register B as "A"15 Matmul.
onne
t(C,"X"); // register C as "X"16 Matmul.matmul(); // 
ompute A = B * C17 // Compute C = B^{T} * A18 Matmul.dis
onne
t("Y"); Matmul.
onne
t(C,"Y");19 Matmul.dis
onne
t("X"); Matmul.
onne
t(A,"X");20 Matmul.tmatmul(); // 
ompute C = B^{T} * A21 Matmul.dis
onne
t();22 [...℄23 // Compute QR fa
torization of X24 QRFizer.
onne
t(X); // register X as the default argument25 QRFizer.fa
torize();26 QRFizer.get_R(R); // get the R fa
tor of QR fa
torize27 rank = QRFizer.rank(); // get the rank of QR fa
torization28 QRFizer.
ompute_Q(); // 
ompute Q fa
tor whi
h overrides X29 QRFizer.dis
onne
t();Fig. 3. Examples of LAKe Servi
esservi
e will 
he
k this internal state and raise an error if the servi
e is not in a
onvenient state to serve this operation. This means that at runtime a methodof the servi
e 
an be 
alled if the state of the servi
e obje
t authorizes it. Twoexamples whi
h illustrate the use of servi
es are shown on �gure 3. The �rstone is the DMatmul Operator servi
e whi
h performs the task Y = A �X ondistributed matri
es DMatrix and the other is QRF a QR Fa
torizer servi
ewhi
h performs several tasks related to the QR fa
torization [2,8℄ of Matrix.An example of use of the state of the servi
e is the 
all to int QRF::rank()method at line 27 of �g. 3, at this point the QRF servi
e will 
he
k if the QRfa
torization is already 
omputed and raise an error if not.The advantages of the Servi
e Pattern (
ompared to the solution adoptedin Paladin) are that the related operations are grouped together in an ob-je
t o�ering a 
omplete servi
e, and that the arguments are dispat
hed only9



when needed. The only drawba
k is the unusual syntax whi
h 
an be furtherimproved by authorizing impli
it 
onne
tion/dis
onne
tion. For example if pa-rameter ``A'' of matmul doesn't 
hange a 
all to Matmul.apply(X,Y) wouldtrigger a X and Y 
onne
tion, a 
all to matmul() and a X and Y dis
onne
tion.The Servi
e Pattern may be implemented with any obje
t-oriented languageproviding dynami
 type 
ontrol, but we must mention that the same spirit ofservi
e is used in the Fortran 77 Reverse Communi
ation me
hanism [4℄. Itis not surprising that the main goal of Reverse Communi
ation is to abstra
taway from iterative method 
ode some matrix/ve
tor operations.The parti
ipants of the pattern are: a Servi
e 
lass, a base Obje
t 
lass andas many des
endants of Obje
t as needed. The Obje
t 
lass has no require-ment other than having type information provided for it 1 . In the followingparm name stands for the name of the argument of the servi
e, typi
ally ``A'',``X'', ``Y'' in �g. 3 whi
h represents the role the arguments play for theMatmul Operator servi
e. The Servi
e 
lass must provide:� one rede�nable method 
onne
t(Obje
t* O, 
har* parm name)whi
h �ndsthe dynami
 type of O and 
alls the spe
ialized method 
orresponding to thespe
i�ed parm name. This method should be rede�ned by the des
endant ofthe servi
e to handle the 
on
erned types,� one method 
onne
t PARM NAME(DType* O) for ea
h parm namewhi
h makessense for the servi
e and for ea
h dynami
 type DType a

epted for this pa-rameter. The 
all to su
h a method will register the obje
t into the servi
eand update the state of the servi
e,� one rede�nable method dis
onne
t(
har* par name) whi
h unregistersthe spe
i�ed parameter(s) and update the servi
e state,� one method do task() for ea
h 
omputational task o�ered by the servi
e.The servi
e may have several methods of this kind. The servi
e should 
he
kits state in order to see if it 
an answer to the do task() 
alls. As an examplethe QRF servi
e has the following 
omputational task:� void fa
torize(): 
omputes the QR fa
torization in 
ompressed form,state 
ondition: matrix to be fa
torized should be 
onne
ted� void get R(Matrix*): retrieves the R fa
tor,state 
ondition: fa
torization should have been 
omputed by fa
torize()and Q fa
tor should not have been formed,� int rank(): returns the rank of the 
omputed fa
torization,state 
ondition: fa
torization should have been 
omputed by fa
torize()and Q fa
tor should not have been formed� void 
ompute Q(): expli
itly forms Q fa
tor,state 
ondition: fa
torization should have been 
omputed by fa
torize()� a spe
i�
ation of the poli
y of the servi
e whi
h explains how the operationsof the servi
e should be 
alled, ordered or not, how many parameters must1 In C++ this translates into having at least 1 non pure virtual method10



set_Arnoldi(Arnoldi* AP);
iterate(int n);
...

Arnoldi_EV

QRF QRFactorizer;

Matrix* H_;
Matrix* V_

gsloop(int jbeg, int jend);

Arnoldi
Arnoldi* AP_;

iterate(int n);...

Itmethod {}

int max_it_;
Matmul_Operator* SMatmul_;

Matrix* x0_;

set_Matmul(...);

iterate(int n) = 0;
...

Fig. 4. Iterative methods interfa
ebe registered for ea
h task. . .The multiple dispat
h problem is solved but we still not ful�ll all the 
onditionsfor a full reuse of iterative methods 
ode. The pre
eding te
hnique works forall the operations listed in x1.2 but the memory allo
ation. We explain thereason and the solution in the next se
tion.2.4 The Need of Generi
itySome 
lasses or fun
tions of LAKe must be able to allo
ate matri
es whosesize depends on input parameters of theses 
lasses or fun
tions. As an exam-ple the Arnoldi 
lass shown in �gure 4 must be able to allo
ate the blo
kHessenberg matrix H and the matrix of the Krylov subspa
e basis V. Thedimensions of H and V 
an be dedu
ed from two parameters needed to 
reatean Arnoldi obje
t: the Krylov subspa
e size m and the matrix V1 2 Rn�s(named Itmethod::x0 on Fig. 4). Algorithm 1.1 implies H 2 R(m+1)s�ms andV 2 Rn�(m+1)s.In a sequential 
ontext this is not a problem sin
e the Matrix used by Arnoldimust have a method to 
reate any re
tangular matrix. Now in a parallel 
on-text V1 is distributed whi
h implies that V should be distributed and H isusually not distributed (see x1.2) but the Arnoldi 
lass has no way to allo-
ate distributed matri
es. In fa
t, it does not need to know if the matri
es ituses are distributed or not. There is a simple solution to this problem: makeall distributed obje
t parameters of the Arnoldi 
lass. Then H and V are nowparameters for 
reating an Arnoldi obje
t. We must add to this list the tem-porary variable W of algorithm 1.1. It must be distributed too be
ause it is11



involved in algebrai
 operations with distributed matri
es. Finally to 
reatean Arnoldi obje
t, all the matri
es must be passed as parameters. We havemade a big step ba
kwards sin
e our 
lass has the same stru
ture as a Fortransubroutine: it requires input/output parameters and workspa
e!Remark 5 (Classes or Fun
tions) It may seem a better 
hoi
e to make theArnoldi 
lass a fun
tion as it is done in IML++ [5℄ or ITL [20℄. We are 
on-vin
ed this is not a good 
hoi
e sin
e our goal is reusing the 
ode implementingthe Arnoldi algorithm. In fa
t if Arnoldi were a fun
tion every Arnoldi 
lientwould allo
ates the H, V and W matri
es before using the fun
tion. If this
lient were given V1 and m as parameters, like Arnoldi EV is, he would re-quire to be given H, V and W too in order to be able to forward them to its ownArnoldi fun
tion. In the end every related iterative method would be
ome fun
-tions, ea
h of them requiring several preallo
ated matri
es arguments in
ludingworkspa
e like W . Workspa
e is really needed sin
e the iterative method doesnot know it uses distributed matri
es. This approa
h breaks en
apsulation sin
e
lients of Arnoldi should provide Arnoldi's private data and workspa
e. This isagainst reuse too sin
e no 
lient 
an polymorphi
ally use a spe
ialized Arnoldifun
tion.Another solution is to use the Servi
e Pattern or the Abstra
t Fa
tory [7,pages 87{95℄ and/or Fa
tory Method [7, pages 107-116℄ patterns to design aMatrix Allo
ator servi
e and pass it as parameters of Arnoldi, but it wouldmake the 
ode of Arnoldi uglier whi
h is just what we want to avoid. The
on
ept that solves all the issues is generi
ity.De�nition 6 (Generi
ity) Generi
ity is the ability to parameterize a 
lasswith a type. We note the generi
 
lass A<TB> where the 
lass A is parameterizedby the formal generi
 type parameter TB.A 
lassi
al example of the use of generi
ity is the Container<TElem> whi
hde�nes a Container whose elements are of type TElem. To use this 
lass withelements of type double we need to instantiate it with the a
tual type param-eter: Container<double>. Con
eptually, the 
ompiler will take the 
ode ofthe generi
 
lass and try to substitute the formal generi
 parameter with thea
tual one. This means that at 
ompile time the generi
 instantiation 
reatesa new 
lass whi
h represents a new type. This 
ompile-time new type 
reationremoves the 
ontravarian
e problem. While writing the 
ode of the methodsof the generi
 
lass we impli
itly assume that the formal generi
 parameterhas some properties 2 like having the +, �, � and = operators. We 
an requirestronger 
onstraints on the generi
 parameter sin
e it may be a 
lass on whi
hwe assume a given interfa
e. If an a
tual type or 
lass AT ful�lls the 
onstraintsof the formal generi
 parameter T we say that AT 
onforms to T.2 This may be expressed by some languages like Ada as 
onstrained generi
ity12



The solution to the distributed allo
ation problem is to parameterize the ma-trix 
lass with an opaque type TShape that gives informations about the shapeof the matrix.3 Shaped Matrix and Matrix ShapeIn this se
tion we explain the notion of Shaped Matrix and Matrix Shape andwe give examples whi
h illustrate their usefulness.De�nition 7 (Shaped Matrix) A Shaped Matrix is a generi
 type of ma-trix, noted Matrix<TShape> in whi
h the formal generi
 parameter TShapemust 
onform to the spe
i�
ation of a Matrix Shape. The only ne
essary ar-gument to 
reate a Shaped Matrix obje
t is a Matrix Shape of type TShape.A Shaped Matrix should be able to give the type of its Matrix Shape and aMatrix Shape obje
t of this type representing its 
urrent shape.Before we go on with Shaped Matrix we present the spe
i�
ation of a MatrixShape.3.1 Matrix ShapeA Matrix Shape is a type whi
h has several requirements. It furnishes theminimal set of operations and fun
tions to make stru
tural 
al
ulation onmatri
es, that is every (elementary) operation that 
an be done on a matrix
an be done on a matrix shape. A Matrix Shape is a kind of rei�
ation of theAbstra
t Data Type matrix as spe
i�ed by the elementary operations givenin x1.2. The ne
essary operations on a Matrix Shape falls into 3 
ategories:(1) Creator/Destru
tor(2) Logi
al Operations(3) Algebrai
 OperationsThe fun
tions of ea
h 
ategory are shown in tables 1, 2, 3.Now that the spe
i�
ation of a Matrix Shape is 
omplete, we will show its usein the design of a Shaped Matrix. 13



Table 1Creator/Destru
tor Operations on Matrix Shape
reate() : 2! TShapeDefault 
reation. This fun
tion 
reates an invalid shape. After this 
reation thevalidity 
he
k would answer that the shape is invalid.destroy(S) : TShape! TShapeDestroys a shape. This fun
tion destroys a shape, and makes it invalid. Afterthis the validity 
he
k would answer that the shape is invalid.
reate(m,n) : int; int! TShapeCreates the default shape for a m� n matrix.
reate(S) : TShape! TShapeCreates a 
opy of a shape S.row shape(S) : TShape! TShapeCreates a 1-row shape with the same 
olumn shape as S. The number of rows ofthe 
reated shape is 1 and the number of 
olumns is the same as S. If S representsan m� n matrix then the resulting shape would represent an 1� n matrix.
olumn shape(S) : TShape! TShapeCreates a 1-
olumn shape with the same 
olumn shape as S. The number of
olumns of the 
reated shape is 1 and the number of rows is the same as S. If Srepresents an m � n matrix then the resulting shape would represent an m � 1matrix.sub shape(S,I1,I2) : TShape; Index; Index! TShapeCreates a shape whi
h is the sub-shape of S ranging from index I1 to index I2.The type of the indexes I1 and I2 are unspe
i�ed here. Typi
ally an index I shouldbe a pair (i; j) if we are interested in 
ontiguous sub-shape, a triplet (i; j; s) ifwe are interested in non 
ontiguous (sli
e) sub-shape or any user de�ned index(for example blo
k index).expand shape(S,m,n) : TShape; int; int! TShapeCreates a shape whi
h is the same as S with m times more rows and n times more
olumns. If S represents an p� q matrix the resulting shape would represent anp �m� q � n matrix.3.2 Shaped MatrixFrom Def. 7 we know that a Shaped Matrix has a formal generi
 parameterTShape 
onforming to a Matrix Shape. The fun
tional requirement of a ShapedMatrix 
onforming to the type Matrix<TShape> are:14



Table 2Logi
al Operations on Matrix Shape!S : TShape! booleanInvalidity 
he
king. The fun
tion 
he
ks if the shape is valid, and return true ifthe shape is invalid. A shape may be invalid if a previous operation produ
ed aninvalid result.S1==S2 : TShape; TShape! booleanStri
t equality. The fun
tion returns true if S1 is stri
tly equal to S2.S1 is assignable to S2(S1,S2) : TShape; TShape! booleanThe fun
tion 
he
ks if we may assign a shape S1 to a shape S2 and returns true ifit is possible and false otherwise. Note that this may be the same as stri
t equalitybut this is not mandatory. In the 
ontext of parallel shape S1 may be assignableto S2 even if S1 is not stri
tly equal to S2, for example if S1 is dupli
ated andS2 is not.Table 3Algebrai
 Operations on Matrix Shapenrow(S) : TShape! intNumber of rows of the shape. This represents the number of rows of the matrix.n
olumn(S) : TShape! intNumber of 
olumns of the shape. This represents the number of rows of thematrix.transpose(S) : TShape! TShapeMatrix Transposition. This fun
tions returns the shape 
orresponding to thetransposed matrix. The resulting shape may be invalid if this kind of shape doesnot support transposition.S1+S2 : TShape; TShape! TShapeMatrix Addition. This fun
tions returns the shape 
orresponding to the additionof matri
es whose shape are S1 and S2. The resulting shape may be invalid ifthe addition of the 2 matri
es is not 
omputable.S1*S2 : TShape; TShape! TShapeMatrix Produ
t. This fun
tions returns the shape 
orresponding to the produ
tof matri
es whose shape are S1 and S2. The resulting shape may be invalid ifthe produ
t of the 2 matri
es is not 
omputable.(1) the only ne
essary information to 
reate (allo
ate) a Matrix<TShape> isan obje
t of type TShape,(2) a Matrix<TShape> must be able to give its 
urrent shape, i.e. an obje
tof type TShape,(3) a Matrix<TShape> must be able to provide the type of its shape, noted15



1 // TMatrix is the type of Shaped Matrix used by Arnoldi2 [...℄3 TMatrix::shape_type SW;4 SW = (SMatmul.shape()*x0.shape());5 #ifdef _LAKE_CHECK6 if (!SW)7 {8 error("Invalid Sparse Matrix Ve
tor Multiply");9 error(SW.invalid_info()); // print invalid_info string of SW10 }11 #endif12 // allo
ate W whose shape is the produ
t of13 // SMatmul and x0 shapes.14 W.
reate((SMatmul.shape())*(x0.shape()));1516 TMatrix::shape_type Sx0;17 Sx0 = x0.shape();18 bV.
reate(Sx0.expand_shape(1,max_it()+1));19 TMatrix::shape_type Sx0t;20 Sx0t = Sx0;21 Sx0t.transpose();22 // allo
ate bH whose shape is the shape of23 // x0^{T} times x0 expanded max_it()+1 times along the rows24 // and max_it() times along the 
olumns.25 bH.
reate((Sx0t*Sx0).expand_shape(max_it()+1,max_it()));Fig. 5. Using shape for allo
ating matri
esMatrix<TShape>::shape type.Note that even if we note a Shaped Matrix Matrix<TShape> it may be ANYuser de�ned type whi
h 
onforms to Matrix<TShape>.The pie
e of 
ode of the Arnoldi 
lass in �gure 5 illustrates the use of shape forallo
ating H, V andW . At line 1{14 we 
reateW whose shape is the produ
t ofmatmul operator shape and x0 shape. At line 16{18 we de�ne V whose shapeis the shape of x0 expanded along the 
olumns m+1 times. Finally at line 19{25 we 
reate the H blo
k Hessenberg matrix whose shape is the shape of xT0 x0dupli
ated m times along the 
olumns and m+1 times along the rows. At line3,16 and 19 we use the embedded shape type: TMatrix::shape type. Lines5{11 show an example of the use of the Matrix Shape for guard 
ondition, thevalidity of the produ
t is 
he
ked on the shape before any produ
t o

urred.One may argue that we 
ould have made the shape me
hanism work dire
tlyon matrix obje
t. If we had given the operator* the matrix multipli
ationsemanti
 we would have had to handle temporaries generated by this operators16



1 int2 main(int arg
, 
har* argv[℄)3 {4 // initialize LAKe5 LAKELL.Initialize(arg
,argv);6 // retrieve the number of pro
essors7 
onst int n_pro
essors = Lakell::LAKE_COMM_WORLD.Size();8 [...℄9 // de
lare a distributed matrix whose shape is a Distribution10 Matrix<Distribution> x0;11 Distribution Dx0; // a Distribution obje
t12 int n_rows = 10000;13 int n_
olumns = 5;1415 // 
reate a row 
y
li
 distribution for a16 // matrix with n_rows and n_
olumns17 Dx0.
reate_row_
y
li
(n_rows,n_
olumns,n_pro
essors);18 // allo
ate the distributed matrix x019 x0.
reate(Dx0);2021 [...℄22 // pass x0 as parameter to Arnoldi ...23 [...℄24 } Fig. 6. Distributing matri
es in the main programwhi
h is something tri
ky [23℄ we were not interested in. Otherwise we shouldhave de�ned algebrai
 operators that do not have their usual sense. Sin
e shapeobje
ts are small obje
ts we may a

ept some temporaries due to operators,moreover temporaries optimization may be added later.The example of �g. 5 shows how a 
lient of a Shaped Matrix may allo
atematri
es whose shape 
an be 
omputed from matri
es arguments passed tothe 
lient. In our example the 
lient is the Arnoldi 
lass whi
h has been giventhe matrix parameter x0 and the size of the Krylov subspa
e m (given by themax it() method). Now allo
ation of the (eventually) distributed matri
es inArnoldi 
omes from the fa
ts that (1) x0 is a distributed matrix and (2) thealgebrai
 rules of 
omputation on shapes di
tate how to 
reate (eventually)distributed shape from x0's shape. The shape me
hanism does not preventthe user to initially distribute himself the parameters in the main program.In order to 
reate a distributed matrix x0 in the main program the user 
ouldhave written something similar to the 
ode presented in �gure 6.The methods used to 
reate distributed shape are NOT part of the standardshape spe
i�
ations. Every parallel matrix shape designer will give its own17



fa
ilities for building distributed shapes, along with the spe
i�ed operations(see tables 1,2,3) on shape. In this way, only the main program would haveto be 
hanged for swapping from one parallel shaped matrix 
lass to another.In this way matrix shape designers do not need to implements all possibledistributions s
hemes but only the ones that are useful for their appli
ations.The only 
onstraint for a matrix shape 
lass is to implement the spe
i�edstandard shape operations.3.2.1 Generi
ity solves Contravarian
eWe have just seen how the Shaped Matrix me
hanism solves the distributedallo
ation problem. It may not seem obvious that generi
ity is really neededin this 
ase, we may have made the Shaped Matrix 
lass a 
lient of an ab-stra
t Matrix Shape 
lass and derive 
on
rete Matrix Shape for sequentialand parallel matrix 
lass. But the 
ontravarian
e problem would still be therein the Arnoldi 
lass as shown in �g. 2. This problem is solved if we makeMatrix a generi
 parameter of Arnoldi whi
h be
omes Arnoldi<TMatrix>,where TMatrix should be a Shaped Matrix. Now when 
ompiling the Arnol-di<TMatrix>with an a
tual generi
 parameter Sequential Matrix or Paral-lel Matrix for TMatrix the 
ompiler will instantiate the right 
all to theTMatrix::tmatmul(TMatrix&, TMatrix&)at 
ompile time. Contravarian
eis solved by generi
ity for all the Itmethod<TMatrix> 
lasses.We made the Shaped Matrix 
lass a generi
 
lass Matrix<TShape> be
ause wewant to reuse the 
ode of the generi
 Matrix 
lass su
h that Sequential Matrixis in fa
t Matrix<Sequential Shape> and Parallel Matrix is in fa
t Matrix-<Parallel Shape>. This is just what we have done in LAKe. It must be notedthat the Parallel Matrix 
lass is not equal to the Matrix<Parallel Shape>
lass but it is derived from it. This last point is important sin
e we need toknow the exa
t shape of the matrix in order to implement Matrix<TShape>::-
reate(TShape S) and all ne
essary elementary matrix operations from x1.2.Then Parallel Matrix rede�nes all the methods inherited from Matrix<Paral-lel Shape> that need to a

ess the interfa
e of Parallel Shape that is nota part of the Matrix Shape interfa
e.3.3 Advantages of Shaped MatrixWe must quote several advantages of Shaped Matri
es whi
h make the 
lientof a Shaped Matrix really independent of its implementations details.� A 
lient of Shaped Matrix may allo
ate temporaries without knowing howit is allo
ated, even in the distributed 
ase.18



� Operations on shape �x the rules for distributing the result of distributedoperations on matri
es.For example the result of the produ
t of a 
olumn-wise distributed matrixby a row-wise distributed matrix should be a dupli
ated matrix. Those rulesmay be 
hanged in the shape 
lass itself and may in
uen
e the distributionof all matri
es, even the temporary storage used by iterative methods.If the distribution rules 
hange you won't need to 
hange any single line ofthe 
ode of the iterative method 
lass.� Shapes unify guard 
onditions for matrix operations.A method like Matrix::matmul(...) usually 
he
ks that its matri
esarguments have the required dimensions to do matrix multipli
ation, thosemethods now use logi
al operators on the shape of the arguments. Whendoing Y = A �X we should have:S1 is assignable to S2(Y.shape(),A.shape()*X.shape()).When adding two (potentially) distributed matri
es A and B you may
he
k that !(A.shape()+B.shape()). If A and B are not distributed in a
ompatible way, the sum of A and B shapes will be invalid.3.4 Compile Time vs Run Time PolymorphismGeneri
ity may be viewed as a 
ompile time polymorphism. Inheritan
e anddynami
 binding are the support for run time polymorphism whereas 
onfor-man
e and generi
ity are the support for 
ompile time polymorphism. Equiv-alen
e between generi
ity and inheritan
e has already been dis
ussed [13,19℄.A 
on
lusion of these studies is that inheritan
e is a general purpose me
ha-nism that may easily emulate generi
ity 3 but the 
onverse is false. Generi
ity
annot emulate inheritan
e but generi
ity is a powerful mean to handle self-referen
ing.We think that both 
ompile time and run time polymorphism are useful and
omplementary. A 
onvenient mean for us to 
hose between 
ompile time andrun time polymorphism is the notion of dynami
 and stati
 
lient relation.De�nition 8 (Dynami
/stati
 Client) A 
lass A is a 
lient of another
lass B if A uses at least one obje
t of type B. The 
lient relation is dynami
if an obje
t of type A may use several 
lass inheriting from B at runtime. The
lient relation is stati
 if the type of the obje
t inheriting from B used by Adoes not 
hange during runtime.Then we re
ommend applying the following rule:3 This is the way Java supports generi
ity sin
e there is no built-in support forgeneri
ity in Java. But this may 
hange in the future [1℄.19



Remark 9 (Generi
ity 
hoi
e rule) If a 
lass A is a stati
 
lient of 
lass Bmake the 
lass B be a generi
 parameter of 
lass A. If a A is a dynami
 
lient ofB then the 
lient relation should be implemented using run time polymorphism.From the implementation point of view the Servi
e/Obje
t ar
hite
ture ofthe Servi
e Pattern is made to fully support the dynami
 
lient relation inwhi
h B is a servi
e for A. Con
erning generi
ity the implementation will bestraightforward if the language fully supports generi
ity, on the 
ontrary pre-pro
essor or sour
e-to-sour
e 
ompiler may be used to support generi
ity 4 .Applying the Generi
ity 
hoi
e rule on the LAKe ar
hite
ture of �gure 1 onpage 6 gives the following generi
 
lasses:� Matrix<TShape,TCSC>� QRF<TMatrix>� EV<TMatrix>� Itmethod<TMatmul Operator,TMatrix>� Arnoldi<TMatmul Operator,TMatrix>� ABR Arnoldi<TMatmul Operator,TMatrix>Remark 10 (Other generi
 libraries) IML++ (Iterative Method Library)[5℄ and MTL/ITL (Matrix Template Library/Iterative Template Library) [20℄both de�ne generi
 iterative methods. LAKe handles issues whi
h are unre-solved in those libraries:(1) they have not been used with distributed matrix 
lasses. A parallel ex-tension of MTL 
alled PMTL is under development but at the time ofthe writing no tests have been done yet. Moreover it is not mentionedthat ITL 
omponents will be able to use PMTL 
omponent without any
hange.(2) the iterative methods are implemented as generi
 fun
tions and not 
lasses.This means that polymorphi
ally reusing an Arnoldi pro
ess was not a goalof those libraries.(3) the fun
tions implementing iterative methods 
annot handle the allo
ationof a distributed variable.The generi
 LAKe library ful�lls its requirements. The 
ode of the iterativemethods hierar
hy is stri
tly the same when used with parallel or sequentialmatri
es. Iterative methods are really building blo
ks whi
h may hold andallo
ate their own data distributed or not. We reuse most of the 
ode ofthe sequential matrix to implement the distributed one. We pointed out amethodology for 
hoosing between run time and 
ompile time polymorphism.4 This remains to be experien
ed sin
e we used C++ whi
h fully supports generi
ity20



3.5 Related WorkTo go a step further with generi
ity we may borrow the idea behind the STL[14℄ also used in MTL whi
h is using iterators on matri
es in order to fa
tor-ize generi
 algorithms like matrix addition or multipli
ation. This is 
urrentlyunder development and will enable us to have several spe
ialized algorithmfor distributed matrix multipli
ation. In this study we will examine the linkbetween our design method and aspe
t-oriented programming [12℄ and gener-ative programming [3℄ whi
h are \natural" extensions to generi
ity.If we look at the Fortran-side of the s
ienti�
 
omputing world we see atleast two relations. We have already pointed out the relation between theServi
e Pattern and reverse 
ommuni
ation, but we may also draw a paral-lel between matrix shape and the distribution dire
tive of HPF [11℄. In fa
tthe DISTRIBUTE, TEMPLATE, ALIGN dire
tive of HPF are 
ompiler instru
tionsfor allo
ating distributed matri
es. The matrix shape plays the same role atruntime, so we may imagine a restru
turing 
ompiler that is \matrix shape"aware to do some optimization at 
ompile time.4 Numeri
al ExperimentsWe have implemented the LAKe library in C++ and used MPI throughOOMPI [22℄ for the parallel 
lasses. We used blo
k Arnoldi method in orderto �nd the 10 eigenvalues of largest modulus. The parameters of algorithm 1.2were: r = 10, s = 4, m = 15. Iterations were stopped whenever the residualasso
iated with the Ritz pair was less than 10�6. The �rst matrix (CRY2500)is taken from the matrix market (CRYSTAL set of the NEP 
olle
tion) andhas 2500 rows and 12349 entries. The se
ond matrix (RAEFSKY3) has 21200rows and 1488768 entries. The matri
es, stored in Compressed Sparse Column(CSC) format, were distributed blo
k 
olumn wise on the spe
i�ed number ofpro
essors. We did not pre-pro
essed the sparse matri
es with any graph par-titionner sin
e this was not a primary goal. Nevertheless we know that, thisreordering should have improved both parallel eÆ
ien
y and speed-up. Nu-meri
al experiments were done on the CRAY T3E of IDRIS 5 .Speed-up are shown in �gure 7. The solid line 
urve 
orresponds to theo-reti
al speed-up and the dashed 
urve to measured speed-up. The speed-up
orresponding to RAEFSKY3 begins with 2 pro
essors sin
e the 
ode is unableto be run on one pro
essor. For CRY2500 a number of pro
essors NPE = 05 Institut du D�eveloppement et des Ressour
es en Informatique S
ienti�que, CNRS,Orsay, Fran
e 21



0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8Speed-Up 

NPE 

CRY2500 

2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16Speed-Up 

NPE 

RAEFSKY3 

Fig. 7. Speed-up
orresponds to the sequential 
ode and NPE � 1 
orresponds to the parallelone. The speed-up are good as long as the number of pro
essors is not toolarge in 
omparison with the size of the matrix. We note that the sequentialand parallel 
ode used for CRY2500 are derived from the same generi
 
ode.This means that for a data set that �ts on a workstation we do not need torun the parallel version on one pro
essor but we instantiate the sequentialversion. A raw 
omparison with a Fortran 77 
ode implementing the methodin a non-generi
 way showed that the Fortran 
ode was 2 times faster thanthe generi
 C++ one. We must note that the 
omparison is not fair sin
e theFortran 77 
ode is far from implementing every feature implemented in theC++ version.Con
lusionWe have presented how a 
oupled obje
t-oriented and generi
 design enablesthe development of the same 
ode for the sequential or parallel version of ourlinear algebra appli
ation. This is a key to parallel software maintenan
e andreuse. The basi
 idea is to parameterize the 
lass whi
h will be
ome parallelby its abstra
t data type. We think the shaped matrix me
hanism may beillustrative enough to give insight for other parallel appli
ations. Experimentshave shown that the same 
ode is working for both sequential and parallelversion with promising s
alability. We pointed out that both generi
ity andpolymorphism are useful. We think that our approa
h is to be related togenerative programming te
hniques and that it is at the edge of 
ompilingte
hnique. 22



A
knowledgementsThe authors want to thank Paul Feautrier and Jean-Yves Chatelier for their
areful reading and improvement suggestions.Referen
es[1℄ Add generi
 types to the java programming language. On the Web., May 1999.http://java.sun.
om/aboutJava/
ommunitypro
ess/jsr/jsr 014 gener.html.[2℄ E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz,A. Greenbaum, S. Hammarling, A. M
Kenney, S. Ostrou
hov, and D. Sorensen.LAPACK User's Guide. SIAM, 1992.[3℄ Krzysztof Czarne
ki. Generative Programming: Prin
iples and Te
hniques ofSoftware Engineering Based on Automated Con�guration and Fragment-BasedComponent Models. PhD thesis, Dept. of Computer S
ien
e and Automation{Te
hni
al University of Ilmenau, 199x. preliminary (O
t. 1998) version kindlygiven by the author.[4℄ Ja
k Dongarra, Vi
tor Eijkhout, and Ajay Kalhan. Reverse 
ommuni
ationinterfa
e for linear algebra templates for iteratives methods. Lapa
k WorkingNote 99, Oak Ridge National Laboratory, May 1995.[5℄ Ja
k Dongarra, Andrew Lumsdaine, Roldan Pozo, and Karin. A. Remington.Iterative Methods Library, April 1996. Referen
e Guide.[6℄ Message Passing Interfa
e Forum. MPI: A message passing interfa
e standard.Te
hni
al Report CS-94-230, University of Tennessee, Knoxville, TN, Mar
h1994.[7℄ Eri
h Gamma, Ri
hard Helm, Ralph Johnson, and John Vlissides. DesignPatterns: Elements of Reusable Obje
t-Oriented Software. Addison-Wesley,Reading, 1995.[8℄ Gene H. Golub and Charles F. Van Loan. Matrix Computation. The JohnHopkins University Press, Baltimore London, 1989. Se
ond Edition.[9℄ Fr�ed�eri
 Guide
. Un Cadre Con
eptuel pour la Programmation par Objets desAr
hite
tures Parall�eles Distribu�ees: Appli
ation �a l'Alg�ebre Lin�eaire. PhDthesis, Universit�e de Rennes 1, Rennes, Fran
e, Juin 1995. PhD thesis editedby IRISA.[10℄ Warren Harris. Contravarian
e for the rest of us. Te
hni
al Report HPL-90-121,Hewlett-Pa
kard Software and Systems Laboratory, August 1990.[11℄ High Performan
e Fortran Forum. High Performan
e Fortran LanguageSpe
i�
ation, January 1997. Version 2.23



[12℄ Gregor Ki
zales, John Lamping, Anurag Mendhekar, Chris Maeda, ChristinaVideira Lopes, Jean-Mar
 Loingtier, and John Irwin. Aspe
t-orientedprogramming. In Pro
eeding of the European Conferen
e on Obje
t-OrientedProgramming, number 1241 in LNCS. Springer Verlag, 1997.[13℄ Bertrand Meyer. Obje
t-Oriented Software Constru
tion. Prenti
e Hall, 2ndedition, 1997.[14℄ David R. Musser and Alexander A. Stepanov. Algorithm-oriented generi
libraries. Software{Pra
ti
e & Experien
e, 24(7):623{642, July 1994.[15℄ Eri
 Noulard and Nahid Emad. Obje
t-oriented design for reusable parallellinear algebra software. In Pro
eedings of EUROPAR'99, 1999. A

epted toEUROPAR'99, 31 Aug. { 3 Sept. 99,.[16℄ Yousef Saad. Numeri
al Methods For Large Eigenvalue Problems. Man
hesterUniversity Press, 1991.[17℄ Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS PublishingCompany, New York, 1996.[18℄ Yousef Saad and Martin S
hultz. GMRES : A generalized minimal residualalgorithm for solving nonsymmetri
 linear systems. SIAM Journal on S
ienti�
and Statisti
al Computing, pages 856{869, 1986.[19℄ Ed Seidewitz. Generi
ity versus inheritan
e re
onsidered: self-referen
e usinggeneri
s. In OOPSLA'94, pages 153{163, 1994.[20℄ Jeremy G. Siek, Andrew Lumsdaine, and Lie Quan Lee. Generi
 programmingfor high performan
e numeri
allinear algebra. In SIAM Workshop on Interoperable OO S
i. Computing, 1998.http://www.ls
.nd.edu/resear
h/mtl/publi
ations.htm.[21℄ D.C. Sorensen. Impli
it appli
ation of polynomial �lters in a k-step Arnoldimethod. SIAM J. Matrix Anal. Appl., 13(1):357{385, 1992.[22℄ Je�rey M. Squyres, Brian C. M
Candless, and Andrew Lumsdaine.Obje
t Oriented MPI (OOMPI): A C++ Class Library for MPI, 1998.http://www.
se.nd.edu/~ls
/resear
h/oompi.[23℄ Todd Veldhuizen. Expression templates. C++ Report, 7:26{31, 1995.
24


