A Key for Reusable Parallel Linear Algebra
Software

Eric Noulard " and Nahid Emad "

aSocieté ADULIS 3, rue René Cassin F-917/2 Massy Cedex France

b Université de Versailles St-Quentin-en- Yvelines — Laboratoire PRiSM Bdtiment
Descartes F-78035 Versailles Cedex France

Abstract

We propose an object oriented design which enables very good code reuse for both
sequential and parallel linear algebra applications. A linear algebra class library
called TLAKe is implemented using our design method. We introduce a new reuse
mechanism called matriz shape which enables us to derive the implementation of
both the sequential and the parallel version of the iterative methods of LAKe. We
show that polymorphism is insufficient to achieve our goal and that both genericity
and polymorphism are needed. We propose a new design pattern as a part of the so-
lution. Some numerical experiments validate our approach and show that efficiency
is not sacrified.

Key words: OO design, genericity, parallel and sequential code reuse, Krylov
subspace methods.

Introduction

In the area of numerical computing many people would like to use parallel
machines in order to solve large problems. Parallel machines like modest sized
SMPs or workstations clusters are becoming more and more affordable, but no
easy way to program these architectures is known today. A message passing
library like MPI[6] brings us a standard for parallel message passing program-
ming. However code written with MPI is hard to understand for non parallel
programming experts and consequently hard to maintain and reuse.

In order to evaluate the object oriented design as a mean to reuse most of the
sequential and parallel software components we develop our previous study
[15]. This goal is reached in two related steps, first by encapsulating parallelism
in such a way that the user may manipulate parallel objects as if she/he were

Preprint submitted to Elsevier Preprint 26 October 2000

working with sequential ones and then by finding a code reuse scheme which
enables the application developer to use either the sequential objects or their
parallel counterpart. In the domain of linear algebra, the family of Krylov
subspace methods allows to solve either eigenproblems [16] or linear systems
[17]. These methods share many properties and are good candidates to code
reuse and parallelization.

In section 1, we present the block Arnoldi method as a particular case of
block Krylov methods and recall the usual way to parallelize such a method.
We list their needed elementary operations for either a sequential or a parallel
implementation. In section 2, we first develop our goals in terms of code reuse
and then present different design solutions with illustrative implementation in
C++4. We show the limit of polymorphism and dynamic binding as a reuse
scheme when compared to genericity. Finally section 4 presents some numerical
experiments.

1 The Block Krylov Methods

The orthogonal projection methods are often used to compute a few eigenele-
ments of a large sparse matrix A (may be noted A). They approximate r
eigenelements of A by those of a matrix of order m obtained by orthogonal
projection onto a m-dimensional subspace K, v of R” with r < m < n. These
methods approximate a solution (A, u;) of the eigenproblem:

Au = du, with Ae R Ae Cu e (1)

by a pair AE”') eC, yfm) e C™ satistying :

(Hn, — Ayl =0 (2)

where the m x m matrix H,, is defined by H,, = VZAVm with V,,, the n x m
matrix whose columns are an orthogonal basis of K, v, VZ the conjugate

transpose of V,, and uEm) = mefm). Thus, in order to solve the problem (1),
we first build an orthogonal basis of K, v and then solve the problem (2).

AE”') , uf;m)) is an approximated solution of (1) and is called a

The couple (
pair of Ritz elements (Ritz value and Ritz vector) of A on the subspace K, v.
A Krylov subspace method is a one for which K, v is defined by K, v =
Span(V, AV,---, A" 'V} where V is spanned by a set {v;,---,v,} of initial
guesses. Among these methods the Block Krylov subspace methods come from
the choice s > 1.

In general, the accuracy of the computed Ritz elements is not satisfactory. In
order to obtain desired accuracy, the computed Ritz vectors will be used to
build a new set of initial guesses. This set of vectors is used to restart the
above process in the iterative version of the projection method. The reader
can find some restarting strategies in [16,17,21].

In this paper we consider a particular case of the block Krylov subspace meth-
ods called the iterative block Arnoldi method to compute some Ritz elements
of a large non-symmetrical sparse matrix. This method is a block version of the
iterative Arnoldi method (when s = 1) [16]. We briefly present the algorithm
constituting the method in the next section and then analyze the elementary
operations involved and their usual parallelization strategies.

1.1 The Block Arnoldi Method

The block Arnoldi method enables to find the eigenvalues whose multiplicity
is less or equal than the block size s. This projection method first reduces
the original matrix A into an upper block Hessenberg matrix H,, using a
Block Arnoldi Process. L.et V; be the orthonormal matrix whose columns are
vy, -+, The block Arnoldi process, given by algorithm 1.1, generates a set
of orthonormal matrices Vi, ---V,,.

ALGORITHM 1.1 (Block Arnoldi Process [MGS version])
Tterate: For 7 =1,2,....m

(a) W = AV,

(b) Fori=1,...,3

Hi; = V;'W
W =W —V,H,;
FEnd For
(c) [Vier, Hi] = QR(W)

FEnd For j

The H; ; s-size matrices computed by this process are the blocks of H,,. The
eigenvalues of this matrix approach some of A. When the Block Arnoldi Pro-
cess terminates, the matrices H,,, A and V,, = [V;...V,] verifies the Block
Arnoldi Reduction equation (3).

Avm — VmHm + Vm,+1 Hm,—l—Lm, Eg (3)

The Block Arnoldi Process is only one step (projection step) of the iterative

Block Arnoldi method whose complete algorithm is given by algorithm 1.2,
where V,, is the n X m - s-size matrix whose block of columns are V;,..., V,,.

ALGORITHM 1.2 (Tterative Block Arnoldi Method)

1) Initialization:
Choose r the number of wanted eigenvalues and m the size
of the Block Krylov subspace.
2) Choose an orthogonal starting matrix Vi of size n X s.
3) lterate:
(a) Projection step: execute a Block Arnoldi Process with
algorithm 1.1. This step produces the Arnoldi reduction equation (3).
(b) Ritz computation step, compute:
- the eigenelements ()\(»m), yfm)) of H,,,

3

- the r wanted Ritz elements ()\gm), ugm)) of A.
(¢) compute the norm of the residuals of the wanted Ritz elements.
(d) compute a stopping criteria
(e) restart the method

e go to step 2) with a new matrix if explicit restart is used

e update Arnoldi reduction and go to 3.a) if implicit restart is used

1.2 Klementary Operations and Parallelization

We must mention that all the Krylov subspace methods share many prop-
erties such as using BILAS operations on sparse and/or dense matrices and
may support different kind of restart during the iterative process ... Thus a
careful modular design of the block Arnoldi method for eigenvalue problems
may enable a lot of code reuse for building for example a GMRES solver [18]
or easy variation of restart strategies. Moreover with a good design, iterative
methods should be parallelized easily and most of the sequential code directly
reused. OQur target parallel machines are distributed memory architectures
which could be either a supercomputer or any cluster. In this context, the
classical way to parallelize Krylov subspace iterative methods is to distribute
the large vectors and/or matrices and replicate the small ones on the pro-
cessors. Then we decompose and distribute all the matrices of size n, that is
the n x n sparse matrix A, Krylov subspace basis V,, of size n x m - s and
possibly the temporary variables like W of algorithm 1.1. But the matrix H,,
and all the m-sized matrices used in step 3.b) algorithm 1.2 are replicated on

processors. From a design point of view it should be interesting to encapsulate
parallel code in a basic parallel matrix class which has the same interface as
the sequential one and implement the iterative method using those matrix
classes. We will further develop this aspect in section 2.

We list hereafter the necessary elementary operations used by iterative meth-
ods. We recall that the Block Arnoldi Method is representative of Krylov
subspace methods for the necessary elementary operations. From algorithms
1.1 and 1.2 and our parallelization strategy we may summarize those require-
ments as following (for m,n,p € N) :

(1) algebraic operations
(a) Full Matrix SAXPY: Y = aX 4+ 8Y with Y, X € R™*” and o, 5 € R.
The matrices may be distributed.
(b) Full Matrix Product: ¥ = aA- X + BY with Y € R™** A € R™*",
X e R"" and o, € R. The matrices may be distributed.
(¢) Sparse Matrix by Full Matrix product: ¥ = aA- X with X, Y € R"*?
and A € R"*” A is sparse. These matrices may be distributed and A
may be available only as a function which performs matrix product.
(2) sub-ranging or aliasing
(a) sub-ranging: Y = A(iy : i9,j1 1 j2), with A € R™ and V €
R 2= +10x(2=11+1) The Matrices may be distributed.
(b) point addressing: A(7,7) = o with A € R™ and a € R. This
operation is authorized only on full matrix.
(3) memory allocation
(a) allocate, deallocate and (re-)distribute A € R™*".

2 Designing a Reusable Software

The block Arnoldi method presented in the previous section led us to design
a class library called LAKe (Linear Algebra Kernels). The main goal of this
library is the use of the same code for the sequential and parallel version
of the iterative methods. In that way we only maintain a single code which
is not cluttered with unreadable parallel code. The following sections will
demonstrate how to achieve this goal. We first present the sequential design
of LAKe, then we explain why polymorphism and dynamic binding are not
sufficient to reach our goal. We finally demonstrate how genericity is the key
of the solution. We point out that our design is the first one to reach such a
reuse goal.

Lake Servu:e{} mimminm s mnmnm e L 2KE Object{}

P ﬁs@ 4M—h<

,, 741
\ﬁl M ,,,,,,,,,,,,, Itmethod {}
Restart {} '4---
['--{ Arnoldi_EV F- :

’ ImpIicit_Reﬂart‘ ’ Epricit_Restart‘

£
o8
3
=]
@]
e]
X
e
o

Inheritance (1s-a) Dynamic Client
— i —

Fig. 1. The LAKe architecture

2.1 LAKe Architecture

The ILAKe architecture is presented in figure 1. Fach box represents a class,
whose features have been omitted for the sake of clarity. Boxes are linked by
arrows which describe the relation between the classes. Plain arrows stand
for inheritance or the is-a relation [13, p. 811]. Each class name recall the
role it play in algo. 1.1 and 1.2, for example the Itmethod class represents
an abstract iterative method while the Arnoldi class implements the Block
Arnoldi Process from algo. 1.1. Thus Arnoldi class inherits from Itmethod
since Arnoldi is an iterative method. This means that each feature defined
in Ttmethod will be a feature of Arnoldi too. Dashed arrows represent the
client relation. A class A is a client of another class B if it uses at least
an object of type B. The Arnoldi EV class implements the Iterative Block
Arnoldi Method described in algo. 1.2 then it uses the Arnoldi class. The
client relation is dynamic if the relation is established at runtime and is static
if it may be established at compile time. As an example the Arnoldi EV class
is a dynamic client of the Restart whose daughter classes Implicit Restart
and Explicit Restart implement varying strategies of restart.

Polymorphism [13, p. 28] is the uniform handling of different objects which
share some parts of their interface (for example by inheriting from the same
base class). Polymorphism associated with dynamic binding [13, p. 29] enables
the polymorphically handled object to act differently at runtime. Dynamic
binding may be illustrated by the Arnoldi EV class which uses (is a dynamic
client of) Arnoldi, but at runtime Arnoldi EV may use an ABR_Arnoldi (algo-
rithmic modification of Arnoldi in order to handle varying block size) object
transparently.

2.2 A Weakness of Polymorphism: Contravariance

Polymorphism seems an obvious way to parallelize iterative methods with-
out touching the code. Fach iterative method is a client of the Matrix class
which implements all the operations described in §1.2. We only need to build
a DMatrix class that is derived from Matrix which redefines the needed fea-
tures in order to have a parallel implementation. Qur iterative methods will
then use the distributed matrix class DMatrix polymorphically, which means
without modifying the code of the iterative method itself. We will now show
why polymorphism is not sufficient to reach our aim. The problem in object-
oriented language is the implicit assumption that inheritance defines a subtype
relation. The following definition specifies the notion of subtype:

Definition 1 (Subtype) A type T" is a subtype of type T', also noted T" <'T
iff every function that expects an arqument of type T may take an arqgument
of type T'.

Contravariance comes out when trying to subtype functions. The idea we
must keep in mind when trying to subtype functions is: g is a subtype of f iff
everywhere f is expected one may use g. The rule for function sub-typing is
given in definition 2. This result is not so natural and detailed examples and
theoretical references may be found in [10].

Definition 2 (Contravariance) lLet T'A — TR be the type of a function
taking an argument of type T A and returning an arqument of type T'R. The
subtype rule for functions is: TA" - TR < TA — TR iff TR < TR and
TA < TA. We say that the output type of a function is covariant since it
varies in the same way the type of the function does, but the type of the input
arquments is contravariant since the subtype relation is inverted.

In the following “A::” prefix means that the feature is defined in class A. The
contravariance problem arises at step b) of algorithm 1.1 when we need to
perform the algebraic operation H;; = V"W on the distributed matrices V;
and W. et TA be Matrix and TB be DMatrix a subtype of TA. The operation
is performed by a call to the method TA: :tmatmul (TA*,TA*) which has been
redefined in the distributed matrix class as TB: :tmatmul (TB*,TBx*). The call is
shown at line 5 6 of figure 2. At this point the wrong method is called because
the subtype relation on functions implies that TB: :tmatmul (TB*,TB*) is not
a subtype of TA::tmatmul (TA*,TA*) since the inputs arguments must be
contravariant.

The only proper method redefinition is: TB: :tmatmul (TA*, TA*). Thus the
type of the arguments must be checked dynamically. This process is called
dispatch of the arguments: single, double and multiple dispatch when doing it
for one, two or more arguments. The multiple dispatch problem is a classical

Arnoldi::gsloop(int jbeg, int jend) {

1
2 [...]

3 W_ = Vi_.copyQ;

4 [...]

5 // call to Matrix::tmatmul (Matrix*,Matrix*)
6 Hij_->tmatmul (Vi_,W_);

7 [...]

8

by
Fig. 2. Bad dispatch call

0O problem and has been solved in the past. It is generally not integrated in
00 languages since it is costly. It was noticed and solved in the same linear
algebra context by F. Guidec in [9, pp. 96 99] for the Paladin linear algebra
library. His solution relies on finding the dynamic type of each argument of
the concerned function by using dynamic type control.

We propose an improved solution as a design pattern called Service Pattern. Tt
has two advantages over the Paladin solution: the dispatch of an argument is
only done when it changes and the dispatch may be done for several operations
using the same arguments.

Remark 3 (Wrong Design) One may argue that the problem comes from
misconception in the Matriz class. Providing a low level interface, like poini-
wise access A1, 7) to both Matriz and DMatriz would enable the implemen-
tation of tmatmul operation in Matriz and its reuse in DMatriz. This would
be very inefficient in parallel environment since it would generate one message

Remark 4 (Anchored type) Some languages like Fiffel offer another solu-
tion to the contravariance problem: anchored type. A variable has an anchored
type if its type is specified to be like another type which may be currently de-
fined. This authorizes covariant redefinition of member method. We do not
consider this solution since C++, our target language, does not support it.
Moreover anchored types have their own drawbacks [13, pp. 621 642].

2.8 Service Pattern Solution

The Service Pattern reifies the method which must dispatch its argument:
the Matrix: :matmul method becomes a Matmul Operator service class. The
Service pattern is inspired from the Visitor Pattern [7, p. 331], and it can use
either dynamic type control or the visitor pattern to dispatch the argument.
The Service Pattern represents a set of operations which register (or connect)
their arguments one by one. The service has an internal state which specifies
which operations may be called on the service. Each operation offered by the

1 // Declaration

2 Matrix xA, *B, *C; // pointer to matrix objects

3 Matrix *xQ, *R, *X; // pointer to matrix objects

4 DMatmul_Operator Matmul; // a distributed Matrix Multiplication service
5 QRF QRFizer; // a QR factorizer service object

6 int rank;

7

8 // polymorphic assignment

9 A = new DMatrix(); B = new DMatrix(); C = new DMatrix();

10 Q = new Matrix(); R = new Matrix(); X = new Matrix();

11 [...]
12 // Compute A = B * C
13 Matmul.connect(A,"Y"); // register A as "Y"

=
S

Matmul.connect(B,"A"); // register B as "A"
Matmul.connect(C,"X"); // register C as "X"
Matmul .matmul(); // compute A = B * C
// Compute C = B~{T} * A
Matmul.disconnect ("Y"); Matmul.connect(C,"Y");

I = S
0o ~N o O

19 Matmul.disconnect("X"); Matmul.connect(A,"X");

20 Matmul.tmatmul(); // compute C = B~{T} * A

21 Matmul.disconnect();

22 [...]

23 // Compute QR factorization of X

24 QRFizer.connect(X); // register X as the default argument
25 QRFizer.factorize();

26 QRFizer.get_R(R); // get the R factor of QR factorize
27 rank = QRFizer.rank(); // get the rank of QR factorization
28 QRFizer.compute_QQ); // compute Q factor which overrides X
29 QRFizer.disconnect();

Fig. 3. Examples of LAKe Services

service will check this internal state and raise an error if the service is not in a
convenient state to serve this operation. This means that at runtime a method
of the service can be called if the state of the service object authorizes it. Two
examples which illustrate the use of services are shown on figure 3. The first
one is the DMatmul Operator service which performs the task ¥ = A- X on
distributed matrices DMatrix and the other is QRF a QR Factorizer service
which performs several tasks related to the QR factorization [2.8] of Matrix.
An example of use of the state of the service is the call to int QRF::rank()
method at line 27 of fig. 3, at this point the QRF service will check if the QR
factorization is already computed and raise an error if not.

The advantages of the Service Pattern (compared to the solution adopted
in Paladin) are that the related operations are grouped together in an ob-
ject offering a complete service, and that the arguments are dispatched only

when needed. The only drawback is the unusual syntax which can be further
improved by authorizing implicit connection /disconnection. For example if pa-
rameter ‘ ‘A’ of matmul doesn’t change a call to Matmul.apply(X,Y) would
trigger a X and Y connection, a call to matmul () and a X and Y disconnection.
The Service Pattern may be implemented with any object-oriented language
providing dynamic type control, but we must mention that the same spirit of
service is used in the Fortran 77 Reverse Communication mechanism [4]. Tt
is not surprising that the main goal of Reverse Communication is to abstract
away from iterative method code some matrix/vector operations.

The participants of the pattern are: a Service class, a base Object class and
as many descendants of Object as needed. The Object class has no require-
ment other than having type information provided for it'. In the following
parm_name stands for the name of the argument of the service, typically ¢ ‘A7 7
X7y in fig. 3 which represents the role the arguments play for the
Matmul _Operator service. The Service class must provide:

e one redefinable method connect (Object* 0, char* parm name) which finds
the dynamic type of 0 and calls the specialized method corresponding to the
specified parm_name. This method should be redefined by the descendant of
the service to handle the concerned types,

e one method connect PARM NAME (DType* 0) for each parm_name which makes
sense for the service and for each dynamic type DType accepted for this pa-
rameter. The call to such a method will register the object into the service
and update the state of the service,

e one redefinable method disconnect(char* par_name) which unregisters
the specified parameter(s) and update the service state,

e one method do_task() for each computational task offered by the service.
The service may have several methods of this kind. The service should check
its state in order to see if it can answer to the do_task () calls. As an example
the QRF service has the following computational task:

- void factorize(): computes the QR factorization in compressed form,
state condition: matrix to be factorized should be connected

- void get R(Matrix*): retrieves the R factor,
state condition: factorization should have been computed by factorize()
and Q factor should not have been formed,

- int rank(): returns the rank of the computed factorization,
state condition: factorization should have been computed by factorize()
and Q factor should not have been formed

- void compute Q(): explicitly forms Q factor,
state condition: factorization should have been computed by factorize()

e a specification of the policy of the service which explains how the operations
of the service should be called, ordered or not, how many parameters must

' Tn C4+ this translates into having at least 1 non pure virtual method

10

[tmethod {}
Matmul_Operator* SMatmul _;
int max_It_;
Matrix* x0_;
set_ Matmul(...);
iterate(int n) = O;
Arnoldi_EV Arnoldi
Arnoldi* AP_; QRF QRFactorizer;
Matrix* V_
set_ArnoIdi(ArnoIdi* AP)-|||-|||-|||-|||-|||-|||-||> M atrix* H_;
iterate(int n); . S
|merae(|n n gsloop(int jbeg, int jend);
iterate(int n);

Fig. 4. Tterative methods interface

be registered for each task. ..

The multiple dispatch problem is solved but we still not fulfill all the conditions
for a full reuse of iterative methods code. The preceding technique works for
all the operations listed in §1.2 but the memory allocation. We explain the
reason and the solution in the next section.

2.4 The Need of Genericity

Some classes or functions of LAKe must be able to allocate matrices whose
size depends on input parameters of theses classes or functions. As an exam-
ple the Arnoldi class shown in figure 4 must be able to allocate the block
Hessenberg matrix H and the matrix of the Krylov subspace basis V. The
dimensions of H and V can be deduced from two parameters needed to create
an Arnoldi object: the Krylov subspace size m and the matrix V; € R™**
(named Ttmethod: :x0_on Fig. 4). Algorithm 1.1 implies H € R(m+1)sxms an
Ve Rnx(m’_l_])s.

In a sequential context this is not a problem since the Matrix used by Arnoldi
must have a method to create any rectangular matrix. Now in a parallel con-
text Vi is distributed which implies that V should be distributed and H is
usually not distributed (see §1.2) but the Arnoldi class has no way to allo-
cate distributed matrices. In fact, it does not need to know if the matrices it
uses are distributed or not. There is a simple solution to this problem: make
all distributed object parameters of the Arnoldi class. Then H and V are now
parameters for creating an Arnoldi object. We must add to this list the tem-
porary variable W of algorithm 1.1. It must be distributed too because it is

11

involved in algebraic operations with distributed matrices. Finally to create
an Arnoldi object, all the matrices must be passed as parameters. We have
made a big step backwards since our class has the same structure as a Fortran
subroutine: it requires input/output parameters and workspace!

Remark 5 (Classes or Functions) [t may seem a better choice to make the
Arnolds class a function as it is done in IML++ [5] or I'TL [20]. We are con-
vinced this is not a good choice since our goal is reusing the code implementing
the Arnoldi algorithm. In fact if Arnoldi were a function every Arnoldi client
would allocates the H, V and W matrices before using the function. If this
client were given Vi and m as parameters, like Arnoldi_EV is, he would re-
quire to be given H, VV and W too in order to be able to forward them to its own
Arnoldi function. In the end every related iterative method would become func-
tions, each of them requiring several preallocated matrices arguments including
workspace like W. Workspace is really needed since the iterative method does
not know it uses distributed matrices. This approach breaks encapsulation since
clients of Arnoldi should provide Arnoldi’s private data and workspace. This is
against reuse too since no client can polymorphically use a specialized Arnoldi
function.

Another solution is to use the Service Pattern or the Abstract Factory |7,
pages 87 95] and/or Factory Method [7, pages 107-116] patterns to design a
Matrix_Allocator service and pass it as parameters of Arnoldi, but it would
make the code of Arnoldi uglier which is just what we want to avoid. The
concept that solves all the issues is genericity.

Definition 6 (Genericity) Genericity is the ability to parameterize a class
with a type. We note the generic class AKTB> where the class A is parameterized
by the formal generic type parameter TB.

A classical example of the use of genericity is the Container<TElem> which
defines a Container whose elements are of type TElem. To use this class with
elements of type double we need to instantiate it with the actual type param-
eter: Container<double>. Conceptually, the compiler will take the code of
the generic class and try to substitute the formal generic parameter with the
actual one. This means that at compile time the generic instantiation creates
a new class which represents a new type. This compile-time new type creation
removes the contravariance problem. While writing the code of the methods
of the generic class we implicitly assume that the formal generic parameter
has some properties? like having the +, —, % and / operators. We can require
stronger constraints on the generic parameter since it may be a class on which
we assume a given interface. If an actual type or class AT fulfills the constraints
of the formal generic parameter T we say that AT conforms to T.

2 This may be expressed by some languages like Ada as constrained genericity

12

The solution to the distributed allocation problem is to parameterize the ma-
trix class with an opaque type TShape that gives informations about the shape
of the matrix.

3 Shaped Matrix and Matrix Shape

In this section we explain the notion of Shaped Matriz and Matriz Shape and
we give examples which illustrate their usefulness.

Definition 7 (Shaped Matrix) A Shaped Matrix is a generic type of ma-
triz, noted Matriz<TShape> in which the formal generic parameter TShape
must conform to the specification of a Matrix Shape. The only necessary ar-
gument to create a Shaped Matrix object is a Matrix Shape of type TShape.
A Shaped Matrix should be able to give the type of its Matrix Shape and a
Matrix Shape object of this type representing its current shape.

Before we go on with Shaped Matriz we present the specification of a Matrix
Shape.

3.1 Matriz Shape

A Matriz Shape is a type which has several requirements. It furnishes the
minimal set of operations and functions to make structural calculation on
matrices, that is every (elementary) operation that can be done on a matrix
can be done on a matrix shape. A Matriz Shape is a kind of reification of the
Abstract Data Type matrix as specified by the elementary operations given
in §1.2. The necessary operations on a Matriz Shape falls into 3 categories:

(1) Creator/Destructor
(2) Logical Operations
(3) Algebraic Operations

The functions of each category are shown in tables 1, 2, 3.

Now that the specification of a Matriz Shape is complete, we will show its use
in the design of a Shaped Matriz.

13

Table 1
Creator/Destructor Operations on Matriz Shape

create() : 0 — T'Shape

Default creation. This function creates an invalid shape. After this creation the
validity check would answer that the shape is invalid.

destroy(S) : T'Shape — T Shape

Destroys a shape. This function destroys a shape, and makes it invalid. After
this the validity check would answer that the shape is invalid.

create(m,n) s int,int — T'Shape

Creates the default shape for a m x n matrix.

create(S) : T'Shape — T Shape

Creates a copy of a shape S.

row_shape(S) : T'Shape — T Shape

Creates a 1-row shape with the same column shape as S. The number of rows of
the created shape is 1 and the number of columns is the same as S. If S represents
an m X n matrix then the resulting shape would represent an 1 x n matrix.

column _shape(S) : T'Shape — T Shape

Creates a T-column shape with the same column shape as S. The number of
columns of the created shape is 1 and the number of rows is the same as S. If S
represents an m X n matrix then the resulting shape would represent an m x 1
matrix.

sub_shape(S,I1,12) : T'Shape, Index, Index — T Shape

Creates a shape which is the sub-shape of S ranging from index 11 to index 12.
The type of the indexes 11 and 12 are unspecified here. Typically an index T should
be a pair (i, 7) if we are interested in contiguous sub-shape, a triplet (i, 7, s) if
we are interested in non contiguous (slice) sub-shape or any user defined index
(for example block index).

expand _shape(S,m,n) : T'Shape, int,int — T Shape

Creates a shape which is the same as S with m times more rows and n times more
columns. If S represents an p X ¢ matrix the resulting shape would represent an
p-m X ¢-n matrix.

3.2 Shaped Matrix

From Def. 7 we know that a Shaped Matriz has a formal generic parameter
TShape conforming to a Matriz Shape. The functional requirement of a Shaped
Matriz conforming to the type Matrix<TShape> are:

14

Table 2
logical Operations on Matriz Shape

1S : T'Shape — boolean

Invalidity checking. The function checks if the shape is valid, and return true if
the shape is invalid. A shape may be invalid if a previous operation produced an

invalid result.

S1==S82 : T'Shape, T'Shape — boolean

Strict equality. The function returns true if S1 is strictly equal to S2.

S1_is_assignable_to_S2(S1,S2) : T'Shape, T'Shape — boolean

The function checks if we may assign a shape S1 to a shape S2 and returns true if
it is possible and false otherwise. Note that this may be the same as strict equality
but this is not mandatory. In the context of parallel shape ST may be assignable
to S2 even if S1 is not strictly equal to S2, for example if S1 is duplicated and
S2 is not.

Table 3
Algebraic Operations on Matriz Shape

nrow(S) : TShape — int

Number of rows of the shape. This represents the number of rows of the matrix.

ncolumn(S) : T'Shape — int

Number of columns of the shape. This represents the number of rows of the

matrix.

transpose(S) : T'Shape — T Shape

Matrix Transposition. This functions returns the shape corresponding to the
transposed matrix. The resulting shape may be invalid if this kind of shape does
not support transposition.

S14S2 : T'Shape, TShape — T Shape

Matrix Addition. This functions returns the shape corresponding to the addition
of matrices whose shape are ST and S2. The resulting shape may be invalid if
the addition of the 2 matrices is not computable.

S1*S2 : T'Shape, TShape — T Shape

Matrix Product. This functions returns the shape corresponding to the product
of matrices whose shape are ST and S2. The resulting shape may be invalid if
the product of the 2 matrices is not computable.

(1) the only necessary information to create (allocate) a Matrix<TShape> is
an object of type TShape,
(2) a Matrix<TShape> must be able to give its current shape, i.e. an object
of type TShape,
(3) a Matrix<TShape> must be able to provide the type of its shape, noted

15

1 // TMatrix is the type of Shaped Matrix used by Arnoldi
2 [...]

3 TMatrix::shape_type SW;

4 SW = (SMatmul.shape()*x0.shape());

5 #ifdef _LAKE_CHECK

6 if (1SW)

7 A

8 error("Invalid Sparse Matrix Vector Multiply");

9 error(SW.invalid_info()); // print invalid_info string of SW
10 *

11 #endif

12 // allocate W whose shape is the product of

13 // SMatmul and x0 shapes.

14 W.create((SMatmul.shape())*(x0.shape()));

15

16 TMatrix::shape_type Sx0;

e
~J

Sx0 = x0.shape();
bV.create(Sx0.expand_shape(1,max_it()+1));

e
o)

19 TMatrix::shape_type Sx0t;

20 Sx0t = Sx0;

21 Sx0t.transpose();

22 // allocate bH whose shape is the shape of

23 // x0°{T} times x0 expanded max_it()+1 times along the rows
24 // and max_it() times along the columns.

25 bH.create((Sx0t*Sx0) .expand_shape(max_it()+1,max_it()));

Fig. 5. Using shape for allocating matrices
Matrix<TShape>::shape_type.

Note that even if we note a Shaped Matriz Matrix<TShape> it may be ANY
user defined type which conforms to Matrix<TShape>.

The piece of code of the Arnoldi class in figure 5 illustrates the use of shape for
allocating H, V and W. At line 1 14 we create W whose shape is the product of
matmul operator shape and xq shape. At line 16 18 we define V whose shape
is the shape of xg expanded along the columns m 41 times. Finally at line 19

25 we create the H block Hessenberg matrix whose shape is the shape of 2!z
duplicated m times along the columns and m 4+ 1 times along the rows. At line
3,16 and 19 we use the embedded shape type: TMatrix: :shape_type. lines
5 11 show an example of the use of the Matriz Shape for guard condition, the
validity of the product is checked on the shape before any product occurred.

One may argue that we could have made the shape mechanism work directly

on matrix object. If we had given the operator* the matrix multiplication
semantic we would have had to handle temporaries generated by this operators

16

int

main(int argc, char* argvl[])

{

// initialize LAKe

LAKELL.Initialize(argc,argv);

// retrieve the number of processors

const int n_processors = Lakell::LAKE_COMM_WORLD.Size();
[...]

// declare a distributed matrix whose shape is a Distribution

O 00 ~N O U W W N~

10 Matrix<Distribution> x0;

11 Distribution Dx0; // a Distribution object
12 int n_rows = 10000;

13 int n_columns = 5;

14

15 // create a row cyclic distribution for a

16 // matrix with n_rows and n_columns

17 DXO.create_row_cyclic(n_rows,n_columns,n_processors);
18 // allocate the distributed matrix x0

19 x0.create(Dx0);

20

21 [...]

22 // pass x0 as parameter to Arnoldi ...

23 [...]

24 }

Fig. 6. Distributing matrices in the main program

which is something tricky [23] we were not interested in. Otherwise we should
have defined algebraic operators that do not have their usual sense. Since shape
objects are small objects we may accept some temporaries due to operators,
moreover temporaries optimization may be added later.

The example of fig. 5 shows how a client of a Shaped Matriz may allocate
matrices whose shape can be computed from matrices arguments passed to
the client. In our example the client is the Arnoldi class which has been given
the matrix parameter x0 and the size of the Krylov subspace m (given by the
max_it () method). Now allocation of the (eventually) distributed matrices in
Arnoldi comes from the facts that (1) x0 is a distributed matrix and (2) the
algebraic rules of computation on shapes dictate how to create (eventually)
distributed shape from x0’s shape. The shape mechanism does not prevent
the user to initially distribute himself the parameters in the main program.
In order to create a distributed matrix x0 in the main program the user could
have written something similar to the code presented in figure 6.

The methods used to create distributed shape are NOT part of the standard
shape specifications. Every parallel matrix shape designer will give its own

17

facilities for building distributed shapes, along with the specified operations
(see tables 1,2.3) on shape. In this way, only the main program would have
to be changed for swapping from one parallel shaped matrix class to another.
In this way matrix shape designers do not need to implements all possible
distributions schemes but only the ones that are useful for their applications.
The only constraint for a matrix shape class is to implement the specified
standard shape operations.

3.2.1 Genericity solves Contravariance

We have just seen how the Shaped Matriz mechanism solves the distributed
allocation problem. It may not seem obvious that genericity is really needed
in this case, we may have made the Shaped Matriz class a client of an ab-
stract Matriz Shape class and derive concrete Matriz Shape for sequential
and parallel matrix class. But the contravariance problem would still be there
in the Arnoldi class as shown in fig. 2. This problem is solved if we make
Matrix a generic parameter of Arnoldi which becomes Arnoldi<TMatrix>,
where TMatrix should be a Shaped Matriz. Now when compiling the Arnol-
di<TMatrix> with an actual generic parameter Sequential Matrix or Paral-
lel Matrix for TMatrix the compiler will instantiate the right call to the
TMatrix::tmatmul (TMatrix&, TMatrix&) at compile time. Contravariance
is solved by genericity for all the Itmethod<TMatrix> classes.

We made the Shaped Matriz class a generic class Matrix<TShape> because we
want to reuse the code of the generic Matrix class such that Sequential Matrix
isin fact Matrix<Sequential Shape> and Parallel Matrixisin fact Matrix-
<Parallel Shape>. This is just what we have done in LAKe. It must be noted
that the Parallel Matrix class is not equal to the Matrix<Parallel Shape>
class but it is derived from it. This last point is important since we need to
know the exact shape of the matrix in order to implement Matrix<TShape>: : -
create(TShape S) and all necessary elementary matrix operations from §1.2.
Then Parallel Matrix redefines all the methods inherited from Matrix<Paral-
lel Shape> that need to access the interface of Parallel Shape that is not
a part of the Matrix Shape interface.

3.3 Advantages of Shaped Matriz

We must quote several advantages of Shaped Matrices which make the client
of a Shaped Matrix really independent of its implementations details.

o A client of Shaped Matriz may allocate temporaries without knowing how
it is allocated, even in the distributed case.

18

e Operations on shape fix the rules for distributing the result of distributed
operations on matrices.

For example the result of the product of a column-wise distributed matrix
by a row-wise distributed matrix should be a duplicated matrix. Those rules
may be changed in the shape class itself and may influence the distribution
of all matrices, even the temporary storage used by iterative methods.
If the distribution rules change you won’t need to change any single line of
the code of the iterative method class.

e Shapes unify guard conditions for matrix operations.

A method like Matrix: :matmul(...) usually checks that its matrices
arguments have the required dimensions to do matrix multiplication, those
methods now use logical operators on the shape of the arguments. When
doing ¥ = A - X we should have:

S1_is assignable to S2(Y.shape(),A.shape()*X.shape()).

When adding two (potentially) distributed matrices A and B you may
check that ' (A.shape()+B.shape()). If A and B are not distributed in a
compatible way, the sum of A and B shapes will be invalid.

3.4 Compile Time vs Run Time Polymorphism

Genericity may be viewed as a compile time polymorphism. Inheritance and
dynamic binding are the support for run time polymorphism whereas confor-
mance and genericity are the support for compile time polymorphism. Equiv-
alence between genericity and inheritance has already been discussed [13,19].
A conclusion of these studies is that inheritance is a general purpose mecha-
nism that may easily emulate genericity * but the converse is false. Genericity
cannot emulate inheritance but genericity is a powerful mean to handle self-
referencing.

We think that both compile time and run time polymorphism are useful and
complementary. A convenient mean for us to chose between compile time and
run time polymorphism is the notion of dynamic and static client relation.

Definition 8 (Dynamic/static Client) A class A is a client of another
class B if A uses al least one object of type B. The client relation is dynamic
if an object of type A may use several class inheriting from B at runtime. The
client relation is static if the type of the object inheriting from B used by A
does not change during runtime.

Then we recommend applying the following rule:

3 This is the way Java supports genericity since there is no built-in support for
genericity in Java. But this may change in the future [1].

19

Remark 9 (Genericity choice rule) [fa class 4 is a static client of class B
make the class B be a generic parameter of class A. If a A is a dynamic client of
B then the client relation should be implemented using run time polymorphism.

From the implementation point of view the Service/Object architecture of
the Service Pattern is made to fully support the dynamic client relation in
which B is a service for A. Concerning genericity the implementation will be
straightforward if the language fully supports genericity, on the contrary pre-
processor or source-to-source compiler may be used to support genericity *.

Applying the Genericity choice rule on the [LAKe architecture of figure 1 on
page 6 gives the following generic classes:

e Matrix<TShape,TCSC>

e (QRF<TMatrix>

e EV<TMatrix>

e Ttmethod<TMatmul Operator,TMatrix>

e Arnoldi<TMatmul Operator,TMatrix>

e ABR Arnoldi<TMatmul Operator,TMatrix>

Remark 10 (Other generic libraries) IML++ (lterative Method Library)
[5] and MTL/ITL (Matriz Template Library/Iterative Template Library) [20]
both define generic iterative methods. LAKe handles issues which are unre-
solved in those libraries:

(1) they have not been used with distributed matriz classes. A parallel ex-
tension of MTIL called PMTI is under development but at the time of
the writing no tests have been done yet. Moreover il is not mentioned
that ITL components will be able to use PMTIL component without any
change.

(2) the iterative methods are implemented as generic functions and not classes.
This means that polymorphically reusing an Arnoldi process was not a goal
of those libraries.

(3) the functions implementing iterative methods cannot handle the allocation
of a distributed variable.

The generic LAKe library fulfills its requirements. The code of the iterative
methods hierarchy is strictly the same when used with parallel or sequential
matrices. Iterative methods are really building blocks which may hold and
allocate their own data distributed or not. We reuse most of the code of
the sequential matrix to implement the distributed one. We pointed out a
methodology for choosing between run time and compile time polymorphism.

4 This remains to be experienced since we used C4++ which fully supports genericity

20

3.5 Related Work

To go a step further with genericity we may borrow the idea behind the STT.
[14] also used in M'TT, which is using iterators on matrices in order to factor-
ize generic algorithms like matrix addition or multiplication. This is currently
under development and will enable us to have several specialized algorithm
for distributed matrix multiplication. In this study we will examine the link
between our design method and aspect-oriented programming [12] and gener-
ative programming [3] which are “natural” extensions to genericity.

If we look at the Fortran-side of the scientific computing world we see at
least two relations. We have already pointed out the relation between the
Service Pattern and reverse communication, but we may also draw a paral-
lel between matrix shape and the distribution directive of HPF [11]. In fact
the DISTRIBUTE, TEMPLATE, ALIGN directive of HPF are compiler instructions
for allocating distributed matrices. The matrix shape plays the same role at
runtime, so we may imagine a restructuring compiler that is “matrix shape”
aware to do some optimization at compile time.

4 Numerical Experiments

We have implemented the LAKe library in C4++ and used MPI through
OOMPT [22] for the parallel classes. We used block Arnoldi method in order
to find the 10 eigenvalues of largest modulus. The parameters of algorithm 1.2
were: r = 10, s = 4, m = 15. Iterations were stopped whenever the residual
associated with the Ritz pair was less than 107%. The first matrix (CRY2500)
is taken from the matrix market (CRYSTAL set of the NEP collection) and
has 2500 rows and 12349 entries. The second matrix (RAEFSKY3) has 21200
rows and 1488768 entries. The matrices, stored in Compressed Sparse Column
(CSC) format, were distributed block column wise on the specified number of
processors. We did not pre-processed the sparse matrices with any graph par-
titionner since this was not a primary goal. Nevertheless we know that, this

reordering should have improved both parallel efficiency and speed-up. Nu-
merical experiments were done on the CRAY T3E of IDRIS?.

Speed-up are shown in figure 7. The solid line curve corresponds to theo-
retical speed-up and the dashed curve to measured speed-up. The speed-up
corresponding to RAEFSKY3 begins with 2 processors since the code is unable
to be run on one processor. For CRY2500 a number of processors NPF = ()

® Tnstitut du Développement et des Ressources en Informatique Scientifique, CNRS,
Orsay, France

21

U CRY2500 ey RAEFKY3
! 14
6 12
5
10
4
- 8
3
) 6
1 Ar——F~
NPE g NPE
0 2
0 1 2 3 4 5 6 7 8 2 4 6 8 10 12 14 16

Fig. 7. Speed-up

corresponds to the sequential code and NPFE > 1 corresponds to the parallel
one. The speed-up are good as long as the number of processors is not too
large in comparison with the size of the matrix. We note that the sequential
and parallel code used for CRY2500 are derived from the same generic code.
This means that for a data set that fits on a workstation we do not need to
run the parallel version on one processor but we instantiate the sequential
version. A raw comparison with a Fortran 77 code implementing the method
in a non-generic way showed that the Fortran code was 2 times faster than
the generic C+4 one. We must note that the comparison is not fair since the
Fortran 77 code is far from implementing every feature implemented in the

C++ version.

Conclusion

We have presented how a coupled object-oriented and generic design enables
the development of the same code for the sequential or parallel version of our
linear algebra application. This is a key to parallel software maintenance and
reuse. The basic idea is to parameterize the class which will become parallel
by its abstract data type. We think the shaped matrix mechanism may be
illustrative enough to give insight for other parallel applications. Experiments
have shown that the same code is working for both sequential and parallel
version with promising scalability. We pointed out that both genericity and
polymorphism are useful. We think that our approach is to be related to
generative programming techniques and that it is at the edge of compiling
technique.

22

Acknowledgements

The authors want to thank Paul Feautrier and Jean-Yves Chatelier for their

careful reading and improvement suggestions.

References

[1]

Add generic types to the java programming language. On the Web., May 1999.
http://java.sun.com/aboutJava/communityprocess/jsr/jsr 014 _gener.html.

E. Anderson, 7. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen.
LAPACK User’s Guide. STAM, 1992.

Krzysztof Czarnecki. Generative Programming: Principles and Techniques of
Software Fngineering Based on Automated Configuration and Fragment-Based
Component Models. PhD thesis, Dept. of Computer Science and Automation
Technical University of Tlmenau, 199x. preliminary (Oct. 1998) version kindly
given by the author.

Jack Dongarra, Victor FEijkhout, and Ajay Kalhan. Reverse communication
interface for linear algebra templates for iteratives methods. Lapack Working
Note 99, Oak Ridge National Laboratory, May 1995.

Jack Dongarra, Andrew Lumsdaine, Roldan Pozo, and Karin. A. Remington.
lterative Methods Library, April 1996. Reference Guide.

Message Passing Interface Forum. MPI: A message passing interface standard.
Technical Report (CS-94-230, University of Tennessee, Knoxville, TN, March
1994.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: FElements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, 1995.

Gene H. Golub and Charles F. Van Loan. Matriz Computation. The John
Hopkins University Press, Baltimore London, 1989. Second Edition.

Frédéric Guidec. Un Cadre Conceptuel pour la Programmation par Objets des
Architectures Paralléles Distribuées: Application a [’Algébre Linéaire. PhD
thesis, Université de Rennes 1, Rennes, France, Juin 1995. PhD thesis edited
by TRISA.

[10] Warren Harris. Contravariance for the rest of us. Technical Report HPT.-90-121,

Hewlett-Packard Software and Systems Laboratory, August 1990.

[11] High Performance Fortran Forum. High Performance Fortran Language

Specification, January 1997. Version 2.

23

[12] Gregor Kiczales, John TLamping, Anurag Mendhekar, Chris Maeda, Christina
Videira lLopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. In Proceeding of the Furopean Conference on Object-Oriented
Programming, number 1241 in LNCS. Springer Verlag, 1997.

[13] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd
edition, 1997.

[14] David R. Musser and Alexander A. Stepanov. Algorithm-oriented generic
libraries. Software Practice & FErperience, 24(7):623 642, July 1994,

[15] Eric Noulard and Nahid Emad. Object-oriented design for reusable parallel
linear algebra software. In Proceedings of FUROPAR’99, 1999. Accepted to
EUROPAR’99, 31 Aug. 3 Sept. 99,.

[16] Yousef Saad. Numerical Methods For Large Figenvalue Problems. Manchester
University Press, 1991.

[17] Yousef Saad. [terative Methods for Sparse Linear Systems. PWS Publishing
Company, New York, 1996.

[18] Yousef Saad and Martin Schultz. GMRES : A generalized minimal residual
algorithm for solving nonsymmetric linear systems. STAM Journal on Scientific
and Statistical Computing, pages 856 869, 1986.

[19] Ed Seidewitz. Genericity versus inheritance reconsidered: self-reference using
generics. In OOPSTLA’94, pages 153 163, 1994.

[20] Jeremy G. Siek, Andrew Lumsdaine, and Lie Quan Tee. Generic programming
for high performance numerical
linear algebra. In STAM Workshop on Interoperable OO Seci. Computing, 1998.
http://www.lsc.nd.edu/research /mtl/publications.htm.

[21] D.C. Sorensen. Tmplicit application of polynomial filters in a k-step Arnoldi
method. STAM J. Matriz Anal. Appl., 13(1):357 385, 1992.

[22] Jeffrey M. Squyres, Brian C. McCandless, and Andrew TLumsdaine.
Object Oriented MPI (OOMPI): A C++ Class Library for MPI, 1998.
http://www.cse.nd.edu/ Isc/research /oompi.

[23] Todd Veldhuizen. Expression templates. C++ Report, 7:26 31, 1995.

24

