
YML/LAKe Web Portal: Web based research portal for linear algebra
application

Olivier Delannoy and Nahid Emad

PRiSM Computer Science Laboratory, Versailles University
45, avenue des Etats-Unis, 78035 Versailles CEDEX FRANCE

{Olivier.Delannoy,Nahid.Emad}@prism.uvsq.fr

Abstract

In the passed decades the development of the numerical li-
braries was a response to the needs in the field of high per-
formance computing. With the advent of the GRID com-
puting, it becomes necessary to adapt these libraries and or
their subroutines as components and to integrate them in a
global computing system. To allow the end-user to be con-
cerned by its science activity and not by the implementation
details of the tools used, the infrastructures complexity of
the GRID must be hidden to him. Indeed, a GRID comput-
ing environment, proposing services such as numerical li-
braries, must offer a convivial web portal to the user. GRID
portals can interact with underlying middleware using inte-
grated workflow engines and with the components consti-
tuting a library relying integrated implementation catalogs.

This paper presents a web based solution for scientific
computation portals. The proposed portal example is based
on the integration of LAKe, a component-oriented library
in the YML workflow engine. YML is composed of sev-
eral tools allowing workflow graph description adaptable to
several middleware and LAKe is an object-oriented linear
algebra class library. By using a representative numerical
hybrid method we show the interest of our high-level appli-
cation portal.

INTRODUCTION

In high performance computing, the demand for re-use led
the design and the development of the numerical libraries
towards an oriented-component approach. It is possible to
adapt some applications of the scientific computation to the
GRID environments. In addition, the class of numerical ap-
plications constituted by the hybrid methods is well adapted
to global computing. Indeed, these applications have asyn-
chronous communications between their coarse grain sub-
tasks, are fault tolerant and present dynamic load balancing

This work was supported by the French Ministry of Research

potentials. For all these reasons it is necessary to design or
adapt existing numerical libraries to GRID environments.
However, of share the complexity of the environments like
that of the quoted numerical algorithms, the use of these li-
braries becomes very difficult for the end-user. It is thus
necessary to design and develop convivial user interfaces.

The NetSolve/GridSolve[5] project is being developed
at the Innovative Computing Laboratory of the University
of Tennessee Computer Science Department. It provides
remote access to computational resources including hard-
ware and software and it supports different architectures
and operating systems, including Unix and Windows plat-
forms. Because of its deployable software architecture, Net-
Solve has been used with other GRID middleware such as
Globus[8] and Condor[9]. In order to monitor the execu-
tion of applications in NetSolve, one can use VisPerf[1].
This tool provides information concerning the NetSolve en-
vironment. Nevertheless, it does not allow application level
events, instead it focuses on maintaining, in real-time, a
snapshot of the underlying middleware as well as the list of
resources involved in the execution of the local client. The
execution monitoring tool discussed here rests heavily on
the application, even for information used to create the mid-
dleware snapshot. YML automatically integrates support
for such information in all applications. However, there is
no global overview of the whole middleware activity. The
UNICORE[7] GRID technology provides a seamless, se-
cure and intuitive access to distributed GRID resources. UNI-
CORE graphical client proposes similar monitoring capa-
bilities. It also allows per application specific monitoring
through the use of plugins on the client. BOINC[10] (Berke-
ley Open Infrastructure for Network Computing) is a soft-
ware system that makes it easy for scientists to create and
operate public-resource computing projects. In systems sim-
ilar to BOINC, users are on the one hand volunteers provid-
ing computing resources and on the other hand scientists
in charge of designing and installing the application. The
BOINC project provides a web interface to monitor the ap-
plication and to create a newcommunity.



This article discusses a web portal solution dedicated
to linear algebra software study in the context of GRID
computing. The solution proposed here relies on the YML
framework[2], which allows workflow graph execution over
large scale middleware. The web portal acts as a client for
the YML framework and targets scientists audience. The
goals of this portal encompass easing experimentation, help-
ing scientific communication between distant research groups.

Following this introduction, the second section gives an
overview of the YML framework. The third section presents
the web portals and its integration with YML. The fourth
section discusses the example of a linear algebra method
for computing a few number of eigenvalues within YML
and the web portal. The last section presents conclusions
and future works.

The YML FRAMEWORK

Research efforts on GRID and peer to peer middleware con-
centrate on increasing the global efficiency and on providing
more and more services to the user. A few projects focus on
the study and design of tools to simplify the use of this kind
of platform. The available solution for such environments
can be classified in three main categories. Message Pass-
ing Interface and similar API adapted to GRID and peer to
peer middleware is one of the most interesting solutions for
the user. She/he is able to use its existing application di-
rectly over large scale middleware. However, the behavior
of a high performance computer and of a grid middleware
is really different and most applications require updates in
order to be efficient. The RPC approach is available with al-
most any GRID middleware. This approach is well adapted
to the GRID middleware and numerous projects such as
OmniRPC[6] and NetSolve make use it. Another approach
consists in workflow engines. It is based on a program that
manages the execution of the computation involved in an
application. This is the solution used in YML.

The YML framework provides the end-user with a set
of tools to develop and execute applications over large scale
architectures. It defines an abstraction and hides the speci-
ficity of each middleware. The abstraction rests on a dedi-
cated programming language, called YvetteML. It is orga-
nized in two distinct aspects. The first one enables the de-
scription of components using XML. A component in Yvet-
teML is a chunk of computation without communications.
A component acquires data before its computation starts and
exports data afterward. The second aspect is used to link
components together to create a complex application. The
user describes the computation of its application using the
component description aspect and uses a graph language to
describe the communication of its application. An appli-
cation developed using the YvetteML language should be
ready-to-use on multiple middleware. The YML framework

strictly separates middleware specific information from the
application description. The same compiled application can
be executed on multiple middleware. Graphs described by
the YvetteML language are fully expanded during the com-
pilation process: loops are unrolled, condition evaluated,
unvisited branches spread out of the graph and constants are
propagated.

The YML framework separates in two parts. The user
view is middleware independent and contains the main ser-
vices of the YML framework. These services consist in a
compiler for the YvetteML language, a real time scheduler
and a development directory. The middleware independent
part is associated to a backend for middleware dependent
services. Figure 1 describes the overall organization of the
YML framework. This figure highlights the different parts
of the YML framework and clearly shows the middleware
specific services known as the backend. The web portal po-
sitions itself as a standard client for the YML framework.
The testbed platform relies on the XtremWeb[11] middle-
ware.

Task Set

Program

Catalog

Backend

Middleware

Independent

Part

YvetteML

Abstract

Middleware

Middleware

Middleware

YML

Development

Catalog

Execution

Specific

YML

Realtime Scheduler

Tasks
Middleware

Part

Web Portal
(YML Client)

Compiler

Figure 1: The YML framework organization

The list bellow describes the role of each tools compos-
ing the YML framework:

• Compiler: It translates applications described us-
ing the YvetteML language to a set of components
calls. Its component call is decorated with two pieces



of information. The execution condition is a boolean
expression which determines whether the component
can be executed or not. The post condition is a list of
boolean flags used to describe the state of the appli-
cation. Execution conditions are evaluated based on
the events.

• Scheduler: It manages application executions. It
acts as a client for underlying middleware accurately
requiring computing resources. During the applica-
tion execution the scheduler detects task ready for ex-
ecution solving dependencies at runtime. Each schedul-
ing iteration may or not generate a set of parallel tasks
which are translated in computing requests to middle-
ware through dedicated backends.

• Development Catalogs:The YML framework stores
components in Catalogs. TheDevelopment Catalog
store information used only during the development
stage. The middleware independent part relies only
on this catalog. TheDevelopment Catalogstore com-
ponents information and data type information used
to validate the YvetteML input program. This cata-
log is not required for executing an application.

• Data Repository: The YML framework implies a
lot of data exchange through the network. The Data
Repository server act as a resource provider and de-
livers data to each components on demands. Note that
the repository does not appear in figure 1.

• Backend: All middleware specific services are en-
capsulated in a backend. A backend generally con-
sists in a YML worker which constitute the compo-
nent execution supporting layer to be executed on re-
mote peer and a client for the middleware itself. It
is easy to add support for new middleware in YML.
Backends can rely on several services provided in YML
such as the Data Repository client library and the com-
ponent generator. YML comes with a default backend
for the XtremWeb[11] GRID middleware.

WEB PORTAL

YML is used as foundation for the web interface. YML
enhances the abstraction level so that this portal does not
depend on the underlying middleware used. We are inter-
ested in a user interface that achieves several goals. The
user interface should help in the experimentation process.
Targeted applications have numerous parameters. Some of
them are purely practical and require a lot of expertise spe-
cific to each method on one hand and on each data set on
the other hand. In the mean time users interested only in
computation results should not have to select all parameters

for several reasons and especially because all of them are
not experts of the used numerical method. For such users
a guided approach must help them in selecting all param-
eters of the methods. Finally, the web portal is used as a
scientific communication tool. Using such web portals one
can evaluate and comment results described in publications.
It has also been used as a live presentation tool for YML
in several events and in particular at Super Computing in
November 2005 [13].

The web portal was designed with the goal of being
an experimentation tool that helps us increase our knowl-
edge and our understanding of the influence of the various
parameters involved in hybrid linear algebra methods. An
overview of the methods and their adaptation to YML is dis-
cussed in the next section. The web portal integrates a full
featured YML client. It consists in queries submission fa-
cilities, a queries manager, a global status to monitor YML
activity. These generic services are well adapted for appli-
cation conception and application testing. Once an applica-
tion becomes stable enough for experimentation, then it is
interesting to provide specific features to help the user with
query submission and monitoring. The web portal is orga-
nized in applications. Each application comes with several
operations. Each operation is associated to a dynamic web
page. The available operations are listed below :

• Introduction: This page is static and describes the ap-
plication. It also lists available monitor views for this
application.

• Submission: This is a wizard used to construct the
YvetteML program of the application. All submis-
sion wizards start with one or several parameters screens,
followed by a code generation page and finally a query
submission to the YML Manager. Submission wizard
acts as a dedicated client for the YML framework.

• Manager: This page lists all submitted queries. A
query can be in one of the following states: ready for
execution, running and finished. The user can start
a query execution, stop a running query and retrieve
finished query results. This page is an application
specific query manager.

• Monitor: This page provides several views of a query.
All views rely on the analysis of the query logs col-
lected during the execution of all tasks as well as of
the data repository associated to the query. The web
portal defines a set of common views available to all
applications. These views are used to display the state
of the query, the source of the query and the proces-
sors or peers involved in the computation of the query.
Applications can also add their own view and provide
application specific displays of the query execution.



All these views are dynamically computed depending
on the information provided by the query execution.

The submission page provides the user with a simple
and guided way to launch an execution. A user interested
only in the computation results can benefit from an auto-
mated parameters selection and configure the methods quickly.
The current submission facilities are the first step toward an
advanced decision making tool with automatic learning fea-
tures.

The most interesting aspect of the application specific
portal facilities consists in the monitoring features. The
monitor presents the application execution in real-time in
several views. Each view is dynamically created and based
on the analysis of the log of the query. YML component
generator integrates information in the log of the execu-
tion of each component in order to construct views. This
generic information is automatically available thanks to the
component generator of YML. Application specific infor-
mation can appear in the implementation component in or-
der to feed application specific views. Figure 2 presents
one standard view. It displays the YML program associated
to the query currently displayed. The query corresponds
to a MERAM process which will be described in the next
section. The figure shows that a MERAM application de-
fines five views. It makes use of four standard views: Status
which displays statistics on the application execution (num-
ber of tasks waiting, executing, etc), Query showing the
YvetteML program of the application, Log displaying the
log of the application execution and finally Workers listing
the workers and the number of times they contribute to the
application. The last view is discussed in the next section.

Figure 2: YML Query Display: A standard monitoring view

YML/LAKe

Linear Algebra Kernel[4] (LAKe) is an object oriented li-
brary dedicated to linear algebra methods development and
especially in the computation of eigenelements. This library
eases the development of iterative methods. The library in-
tegrates all supporting classes required for the calculating
of some eigenpairs of large sparse non-Hermitian matrices
using some iterative methods named Explicitly/Implicitly
Restarted Arnoldi Method (ERAM/IRAM). These methods
are well adapted to hybridization. An hybrid method is
composed of several methods collaborating to enhance the
convergence speed of one of them. Traditionally, we distin-
guish a special case of hybridization called multi-methods.
It consists in several instances of the same method exe-
cuted in parallel (or not). Each method starts with a dif-
ferent set of initial guesses and exchanges results during
the restarting step. Multiply Explicitly Restarted Arnoldi
Method (MERAM)[3] is a multi-method based on several
instances of the ERAM Process executed in parallel. This
hybrid method is well adapted to the GRID computing envi-
ronments because of its coarse grain sub-tasks, built-in fault
tolerance and dynamic load balancing potentials.

The coarse grain sub-tasks aspect of MERAM and sim-
ilar hybrid methods are really interesting in the context of
GRID computing. YML defines a component model requir-
ing the application to be split in chunks of computation re-
quiring no inter-components communication. Those chunks
match the coarse grain sub-tasks specificity of hybrid meth-
ods. The computation of an ERAM process involved in the
computation of a MERAM method can be cut in several
steps as follows. The first step is called the Arnoldi Re-
duction(AR) and constructs a similar problem of a smaller
size which will be used for the second step. The second
step(S) resolves the eigenpairs problem on the smaller prob-
lem and creates an approximation of the solution. The ac-
curacy of this solution is checked and if user criteria were
not matched a restarting step is initiated. The restarting step
consists in a reduction(Re) operation and the appliance of
a restarting(R) strategy. The output of the second step con-
sists in the expected eigenvalues and the eigenvectors asso-
ciated named Ritz vectors. The reduction operator selects
the best vector computed in all of the ERAM process for
each eigenvalue independently. Restarting strategies are nu-
merous.They consist in combining the eigenvectors selected
during the reduction operation in order to head the method
toward the solution. Restarting strategies details are out of
the scope of this article, one can consult[12] for a detailed
discussion on this topic.

MERAM has been adapted to YML using the LAKe ob-
ject oriented library. Adapting LAKe to work with YML
consists in decomposing the ERAM process to fit the step
highlighted previously. The YML graph language (Yvet-



teML) splits the application in two aspects a control aspect
and a computing aspect. In YML the control of the ap-
plication is externalized outside the application itself. All
information needed to compute the solution is transmitted
through component communication channels or parameters.
It is a typical behavior when using stateless components
models. Figure 3 displays a rolled up version of the graph
corresponding to a MERAM made of three ERAM pro-
cesses. MERAM is not limited to three ERAM processes.
In figure 3, solid arrows correspond to strict dependencies
while dashed arrows correspond to optional dependencies.
ERAM processes involved in a MERAM are independent
and progress at different speed depending on their initial
guess. They also constitute the application level fault tol-
erance mechanism available in MERAM ; any ERAM pro-
cess can fail until only one remains. The first iteration of
MERAM differs from the other and require an additional
step (I) which consists in creating an initial vector (it corre-
sponds to the restarting vectors of all other iterations).

AR

S

Re Re

Re

R

AR

S

Re Re

Re

R

I

I

Start

Re Re

Re

R

S

AR

Stop

I

ERAM 3
ERAM 2

ERAM 1

Figure 3: YML control graph for MERAM

An important parameter required in each ERAM pro-

cess involved in MERAM is the size of the sub-space. This
size corresponds to the size of the smaller problem. In order
to understand the impact of this parameter on the conver-
gence speed of the method, we define one special view con-
sisting of one curve per ERAM process. Each curve denotes
the accuracy of the solution computed at the current itera-
tion. Figure 4 shows the execution of a MERAM process
consisting of three ERAMs. The horizontal line at the bot-
tom of the graph corresponds to the accuracy requirement
specified in the query. The MERAM stops its execution
once one process converges (finds solutions with an accept-
able precision).

Figure 4: MERAM Convergence: an application specific
view example

CONCLUSION

We have described a web portal oriented towards linear al-
gebra applications. It rests on the YML framework, a work-
flow engine for GRID computing. The web portal provides
facilities for the study of numerical methods hiding the com-
plexity of GRID middleware on the one hand and of the ap-
plications on the other hand. Motivations for creating web
portals are to ease experimentation, inter research group
collaboration as well as scientific communication and dif-
fusion.

The web portal behaves as a standard client for the YML
framework with query submission, management and mon-
itoring facilities as well as application specific interfaces.
Each registered application enriched the web interface with
new guided submission wizard, query generators, queries
management and monitoring. The monitoring aspect is one



of the most important ones, each application provides sev-
eral views of all running or executed queries. An application
benefits from standard views and specific ones can be added
to the web portal.

An ongoing work increases the number of generic and
application specific views and develops integrated on-line
tools for live collaboration between distant research groups.
We also put effort in designing intelligent mechanism to
guide the user in the parametrization of its numerical meth-
ods. Expert knowledge should be dynamically integrated
in application submission wizard using a decision making
solution. For the time being an important effort is needed
in order to determine a coherent and generic enough expert
knowledge storage format.

1 References

[1] Lee D., Dongarra J., Ramakrishna R., VisPerf: Moni-
toring Tool for Grid ComputingLecture Notes in Com-
puter Science, Springer Verlag, Heidelberg, Volume
2659, pp. 233-243, 2003.

[2] Delannoy O. and Petiton S. A Peer to Peer Comput-
ing framework: Design and Performance Evaluation
of YML. Third International Workshop on Algorithms,
Models and Tools for Parallel Computing on Hetero-
geneous NetworksJuly 2004; ISPDC/HeteroPar post
conference proceedings by IEEE Computer Society
Press, Ireland.

[3] Emad N., Petiton S. and Edjlali G. Multiple explic-
itly restarted Arnoldi method for solving large eigen-
problems.SIAM Journal on scientific computing SJSC
2005;27 (1): 253-277.

[4] Noulard E., Emad N. A key for reusable parallel lin-
ear algebra software.Parallel Computing Journal, El-
sevier Science B.V.2001;27(10)(10-4): 1299-1319.

[5] Agrawal S., Arnold D., Blackford S., Dongarra J.,
Miller M., Sagi K., Shi Z., Seymour K., Vahdiyar S.,
Users’ Guide to NetSolve v1.4.1,ICL Technical Re-
port, ICL-UT-02-05, June 25, 2002.

[6] Sato M., Hirano M., Tanaka Y., Sekiguchi S., Om-
niRPC: A Grid RPC Facility for Cluster and Global
Computing in OpenMP.Proc. of WOMPAT 2001, pp.
130-136, 2001.

[7] D. Erwin, ed., UNICORE plus final report – uniform
interface to computing resources,Forschungszentrum
Jlich, 2003, ISBN 3-00-011592-7

[8] Globus Projecthttp://www.globus.org

[9] Condor Project,http://www.cs.wisc.edu/condor/

[10] David P. Anderson BOINC: A System for Public-
Resource Computing and Storage,5th IEEE/ACM In-
ternational Workshop on Grid Computing, November
2004, Pittsburgh, USA

[11] Capello F., Djilali S., Fedack G., Herault T.,
Magninette F., Neri V. Lodygensky O., Computing
on Large Scale Distributed Systems: XtremWeb Ar-
chitecture, Programming Models, Security, Tests and
Convergence with Grid, To appear in FGCS Future
Generation Computer Science, 2004.

[12] SAAD Y., Numerical Methods for Large Eigenvalue
Problems,Manchester University Press, Manchester,
UK, 1992

[13] http://lavezzi.rech-info.yser.net/sc05/


