
1

A Peer to Peer Computing Framework: Design and
Performance Evaluation of YML

Olivier Delannoy? and Serge Petiton‡

? PRiSM, Universit́e de Versailles Saint-Quentin, France
olivier.delannoy@prism.uvsq.fr

‡ INRIA / LIFL Universit́e de Lille, France
petiton@lifl.fr

Abstract— Peer to peer and grid systems provide attractive
middlewares to solve large numerical problems. The develop-
ment, deployment and execution of applications using those
middlewares suffer from the lack of well-adapted advanced
tools. There is not any available solution to use the same
application on two distinct middlewares. Our article presents
the YML Framework which provides supporting tools to design
and execute portable parallel applications over large scale peer
to peer and grid middlewares. The YML Framework defines
a new parallel programming language called YvetteML which
is composed of a graph language and a component model.
We evaluate the performance of our framework with a simple
numerical application using XtremWeb as a middleware.

Index Terms— Parallel and Distributed Computing, Peer to
Peer, Matrix Computation

I. I NTRODUCTION

Peer to peer and grid systems are middlewares that pro-
vide a set of services to aggregate an important number
of resources inside a unique system. Hence it implies the
necessity of managing heterogeneity, scalability, dynamics and
fault recovery. Projects likeseti@home1 and distributed.net2

have demonstrated the validity of solving some numerical
applications on peer to peer systems. The Auger project [1]
uses XtremWeb to simulate the highest energy cosmic ray
showers. The three projects named above are based on peer to
peer systems and they all share a property. Each parallel task
does not exchange any data during the computation.

No reliable tools are currently available to help the user
during the development of parallel applications on a large
scale architecture. As a result the user has to solve by him-
self problems such as heterogeneity, fault tolerance, resource
management and scheduling for each new application. The
dynamics of such architectures increase the global difficulty
of using those platforms. Those difficulties specific to each
middleware should not have to be solved for each application.
Advanced tools should solve most of the complexity automat-
ically and transparently for the user by introducing more and
more services in the execution layer.

We designed the YML Framework so as to provide some
tools that will help users design and execute complex parallel

1http://setiathome.ssl.berkeley.edu/
2http://www.distributed.net/

applications. Its goals are to help users during the devel-
opmeint and execution steps. Through our work we aim at
demonstrating the feasibility of using peer to peer and grid
systems for parallel communicating applications. In addition
to this we design easy-to-use tools in order to manage un-
derlying middlewares. This article focuses on performance
evaluation with a numerical application. The performance
evaluation consists in two series of experimentations. The
first one corresponds to the hypothesis that the application
data are previously generated by a peer to peer application or
available on a distributed persistent storage. The second series
of experimentations integrates the peer to peer application
generating the matrix involved in the computation.

The second section presents the solution in use on the
different grid and peer to peer middlewares through user’s
point of. It mainly deals with tools and libraries availableto
design parallel applications. The third section introduces the
YML Framework. It also shows how it interacts with grid and
peer to peer middlewares and presents the first implementation
using the XtremWeb peer to peer system. The fourth section
relates to performance evaluation. The last section discusses
on the benefits of this framework and presents future works
regarding this project and the algorithmic well-adapted tosuch
middlewares.

II. RELATED WORK

Parallel architectures mainly provide two ways of designing
parallel applications, namely the Message Passing Interface
(MPI) library and the OpenMP library. OpenMP is devoted
to systems including shared memory functionalities. Never-
theless, large scale architecture software does not currently
provide any support regarding shared memory. MPI is targeted
to distributed memory. The current MPI implementations
available on high performance parallel computers are generally
the 1.1 standard. This standard faces a limitation. Indeed there
is no way to adapt the number of participants in the com-
munication during the execution. The number of processors
involved in a computation is fixed at the beginning of the
execution. On grid and peer to peer systems, the amount
of available resources may change quickly. Therefore, grid
and peer to peer implementations of the MPI standard suffer



2

from the limitation of the fixed number of participants. There
are two ways of solving fault tolerance problems inherent to
large scale architecture softwares. MPI implementations try to
manage faults automatically. It is the case of implementations
such as MPICH-V [2] or MPICH-G [3], [4]. The other
approach consists in informing the application that a problem
occurred and letting the application apply a recovery procedure
or not. It means that the number of participants in those kinds
of implementations may change during the execution. The FT-
MPI [5] is an example of such implementations.

An emerging standard for parallel computing on grid and
peer to peer architectures currently experimented and designed
is a grid enabled Remote Procedure Call (RPC) API. A grow-
ing number of projects implement RPC mechanisms to address
jobs submission on middlewares. At the moment the most used
and mature ones are GridRPC [6], [7] and OmniRPC [8]. The
GridRPC seems to be the future standard API common to
numerous grid and peer to peer middlewares. An RPC based
approach is also used in Netsolve and its implementation over
grid middlewares: GrADSolve [9]. Applications using those
kinds of API are mainly based on two different parts: on
the one side a client control program and middleware reg-
istered services or functions on the other side. The XtremWeb
middleware provides the P2P-RPC [10] implementation. The
RPC paradigm addresses the problem of the fixed number of
participants. However, communication between participants is
not really integrated to the model. It is rather difficult in two
distinct RPC calls to exchange data during the computation of
both RPC.

An alternative approach used in some projects is based
on coordination languages. Those languages distinguish two
different aspects. On the one hand, the flow control is to be
found and on the other hand there are computation blocks.
These two clearly separated aspects improve the readability
and the computer-based recognition of the program but this
implies the knowledge of two languages: the one used to
describe control flow and the one used for computation blocks.
The flow control acts like a control program in Netsolve or in
RPC based applications. As to the computation blocks, they
are usually written using standard generalized programming
languages like C/C++, JAVA or Fortran. This approach has
been used in Opus [11] and TwoL [12], [13]. The coordination
language maps the top algorithm structure and the computation
maps the simple tasks. Coordination languages have been used
to separate data parallelism from tasks parallelism [14]. The
redundant works associated with communication are handled
automatically. DagMan provides a runtime support for Condor
[15] pool clusters. DagMan enables the user to describe a
graph of tasks. It is not exactly a coordination language
because it does not include the task description aspect but
it offers capabilities of expressing the coordination between
tasks.

Previously introduced API are ongoing works and active
projects. The MPI approach is well suited to numerical prob-
lem solving due to the amount of existing applications readyto
use. However, there are no dedicated tools available to develop
applications on peer to peer and grid systems. It is not a prob-
lem as long as we use such systems without communication

between participants. In such applications parallelism reaches
its maximum because there is not any synchronization between
participants. It consists of the same computation executed
independently on each processor with a different set of initial
parameters. It is calledTask farming. The AppLeS Parameter
Sweep Template project [16], [17] provides users with a way
of executing a set of tasks on a grid middleware. That set
is described using XML input defining the job requests. The
software handles requests trying to optimize different criteria
such as data migration, total execution time and the number
of tasks executed at the same time. All numerical problems
cannot be solved using the same techniques. Some applications
need communication between participants.

In order to develop peer to peer applications the JXTA [18]
project designed a set of protocols as basic blocks of peer
to peer communities. Those blocks provide a generic peer to
peer framework to design applications. JXTA also provides
protocols for resources discovery, queries, communication
between participants using a pipe, etc. This set of protocols
and the corresponding implementation available define the
underlying infrastructure for a peer to peer network. On topof
those protocols, developers can create applications. The JXTA
project creates a multiple applications layer for peer to peer
applications and provides useful mechanisms to design new
applications. Nevertheless, it does not directly provide away
to execute parallel applications. It does not solve problems
such as schedule of applications, deployment or resource
allocation. It is mainly a general set of protocols for peer to
peer applications. JXTA wants to be as general purpose as
possible.

III. YML F RAMEWORK

Large scale architectures, mainly grid and peer to peer
systems, aggregate heterogeneous computers in a complex set
of computation resources. In such an environment, resources
appear and disappear rather frequently. Users cannot handle
the dynamics of the architecture manually. When they want
to use peer to peer applications, they must be aware that they
cannot make any hypotheses on the organization and on the
availability of one or a group of resources. This implies that the
application must adapt its computation itself to the available
resources. Another problem occurring with such architectures
lies within the heterogeneity of the hardwares and of the local
softwares available on each participant.

The YML Framework aims at providing the user with a
simple way to develop and execute applications on peer to
peer and grid middlewares. One role of this framework is
to define an abstraction for middlewares, hiding differences
among them and using this abstraction to remain portable
over multiple middlewares. The user can easily develop a
complex parallel application which may transparently execute
on multiple middlewares during one application execution.
Figure 1 reflects the project’s organization. Users interact with
the framework using a web ASP or any client of the YML
Framework. Using the ASP, one can define components or
execute complex applications. A set of directories helps inthe
development of its application providing expert knowledge.



3

XtremWeb

Expert
knowledge

Execution

Application

Creation

Application

Monitoring

Execution

WEB ASP

Middleware Abstraction layer
YML Framework

Ninf Netsolve

Fig. 1. Project Organisation

An abstraction of middlewares has to provide a set of
services to the user application, which should be available
on each middleware or easy to simulate on the ones which
are not able to provide one of those services. We design our
abstraction around a component model linked to a graph de-
scription language. The graph language is used to link together
components involved in the execution of an application. The
YML Framework defines a component as an encapsulation of
simple tasks nodes of a directed acyclic graph representinga
complex application. Components exchange data using defined
input and output channels. All components are registered into
directories. There are two levels of directories inside theYML
software. A directory is a list of components separated into
different namespaces. A global one aggregates all components
available to any user. It can only be modified by privileged
users. Otherwise entries in each normal user’s namespace are
reserved to the current user. He manages his own namespace
and the information contained in it can only be accessed
by himself. The namespace separation is common to both
directories but the contents of these differ.

The YML Framework component model defines three dif-
ferent component classes as shown in figure 2. Abstract
Components and Graph Components are used to provide
independent application graph descriptions. Implementation
Components are binary applications executed on middlewares.
These are described using an automatically generated skeleton
and a user provided computation code. This computation code
can be written using languages such as C/C++, Fortran or
JAVA depending on the availability of skeleton generators
for the targeted language. The computation code does not
include the communication mechanism, data encoding and
other services used to manage heterogeneity of the peer to peer
or grid middleware. Components are described using XML.
Generators are written using XSLT stylesheet transformations.

The first directory is used for the development stage. It
contains objects needed during the creation of an application
and can be shared between many underlying middlewares. It
also encompasses a set of blocks usable to design applications.
The content of the Development Directory does not depend
on the underlying middlewares. The second directory contains

Abstract

Component

Component

Graph

Data Type

Component

Implementation

use <

is a >

aggregate >

realize <

Development Directory Execution Directory

Add, Use, Combine Components
Add, Use, Combine Data Types

Add Components

YvetteML
Compiler

Real Time
Scheduler

YML Framework

Interract During Execution
Interact Before Execution

Applications

Fig. 2. Components Model and Directories

middleware specific information such as binary applications.
Figure 2 describes the contents of each directory and the
way the user can interact with both of them. The figure
also introduces two modules composing the YML Framework.
The compiler takes in input the YvetteML language and
generates new components, applications and data types going
in directories or to the real time scheduler. The scheduler
controls the execution of applications. Both modules will be
described further on.

During the execution stage, the execution directory is solely
used. This straight separation enhances portability of theglobal
system and makes it possible to postpone some important
choices until execution time depending on the current state
of the middleware. Components are separated into three cat-
egories. Those categories are introduced to solve different
problems like reusability, portability and adaptability.

The graph description language provides constructions to
describe a parallel application composed of previously intro-
duced components. Its goal lies in describing dependencies
between components on one side and parallelism in the
application on the other side. A graph is a comprehensive
representation of a template for a parallel algorithm. The
template is filled using a set of components corresponding
to a specific application.

To conclude the YML Framework overview, we present an
example of an YvetteML application. This example mainly
presents the graph description language aspect. It does notdeal
with components description. Figure 3 contains the YvetteML
program. The XML document begins with the root element
yml providing user accounting information. Accounting infor-
mation is used to manage namespace in the YML Framework.
An application always starts with anapplication element. This
example hides details concerning application management
such as the name used to identify results. The YvetteML
language used to describe graphs is contains in thesource
element. It contains two parts. Declarations stand first. They



4

provide construction to define constants, events and variables.
Declarations help the compiler to validate the application
before its execution. The second part of an YvetteML ap-
plication consists in statements. They provide constructions
to call components, create parallel sections and synchronize
executions of parallel sections.

1 <?xml version="1.0"?>
2 <!--
3 top level element for
4 YvetteML program
5 -->
6 <yml user="login" password="pass">
7 <application>
8 <source>
9 #Decl.: const integer value

10 const problemSize := 10000;
11
12 #Decl.: event array of dimension 2
13 event evt[2];
14
15 #Decl.: variable of type MatrixReal
16 var MatrixReal vRes[1];
17
18 #Statements start after declarations
19 par # a parallel section
20 # an iterator based parallel section
21 par (i:=1, problemSize) do
22 # a component call
23 compute fillMatrixReal(vRes[i],
24 problemSize, i);
25 # notify an event to the whole
26 # application
27 signal(evt[i,1]);
28 end par do
29 // # Parallel block separator
30 # Block until the events named
31 # evt[10,1] and evt[11,1] are
32 # notified.
33 wait(evt[10,1] and evt[11,1]);
34 # a component call
35 compute SumMatrixReal(vRes[10],
36 vRes[11]);
37 #...
38 #//
39 # ...
40 end par
41 </source>
42 </application>
43 </yml>

Fig. 3. YvetteML Application Template

A. Implementation

The YML Framework interacts with the user using a com-
piler. This one translates components into binary applications
and directory entries. It also translates graph descriptions in

YvetteML into fully expanded graphs ready for execution over
the underlying middleware. Figure 4 provides an overview of
the inside of the YML Framework. The two main modules
composing the YML Framework are thecompiler and the
scheduler. The compiler ensures portability while the sched-
uler provides execution management. It analyses graphs from
the compiler and manages dependencies for the middleware.
The schedulerinteracts with the middleware using both tasks
launcherandretriever modules. The YML Framework acts as
a normal client for the execution layer.

Scheduler

Storage

Launcher

Compiler

Generator

monitor

YML software

middleware

User

Retriever

Execution
Directory

Development

Directory

Fig. 4. YML Software Organization

The XtremWeb middleware is a peer to peer environment
which provides support for binary applications execution and
deployment. The YML Framework simulates communication
between workers defining a centralized shared memory mech-
anism. This shared memory is a persistent storage used to
store partial results of each job executed on the XtremWeb
middleware. The shared memory can be considered as an in-
cremental checkpoint of the computation data. This centralized
implementation introduces a bottleneck. For each component
execution, data come from the shared memory located on the
same computer as the YML Framework and go back after
updates to the YML Framework hosting nodes so that partial
results should be available to dependent component execu-
tion. There is not any direct communication between peers.
Obviously it is transparent for the user ; so if a middleware
provides built-in support for communication between workers,
the YML Framework backend dedicated to this middleware
overrides the YML general functionning in order to benefit
from these functionnalities. The YML Framework scheduler
modules monitor the state of the XtremWeb middleware in
order to accurately create job requests. Dependencies between
tasks are managed using a table of events. Each YML task is
decorated using an execution condition and a post execution
events set. This condition is a boolean expression depending
on the events involved in the computation of an application.



5

Once the boolean expression is true, the task is ready for
execution. After the computation on the middleware, all events
composing the execution events set associated with the task
are notified making the application progress.

IV. EXPERIMENTATIONS

We evaluate our software using the applicationy = Ax+x

whereA is a square dense matrix composed of real numbers
andx andy are both vectors of real numbers. Supposing the
A matrix does not fit in the memory of a peer, we divideA in
a set of blocks. Each block is itself a square matrix. We define
bs as the size of one block andbc as the number of blocks
on one dimension. The number of elements ofA is (bs∗ bc)2.
Vectors are also divided in blocks. The size of each block
is bs too. The algorithm of the application shown in figure
5 explains its steps. The first parallel section generates and
duplicates the initial vector. The copy stands for the initial
value of the resulting vector. After this parallel section,the
resulting vector contains the initial copy ofx. The second
parallel section works in columns. Each column of the matrix
is computed before the next column and the resulting vector is
updated after each step. In figure 5bs does not appear because
it only has an effect during the execution of the block matrix
vector multiplication component at line 9 of the algorithm.
The YvetteML program will illustrate this point in figure 7.

1 in parallel do
2 for i from 1 to bc do
3 y[i] = x[i]
4 end for
5 end do
6 for i from 1 to bc do
7 in parallel do
8 for j from 1 to bc do
9 y[i] = y[i] + A[i,j] * x[j]

10 end for
11 end do
12 end for

Fig. 5. Algorithm of they = Ax + x Application

Figure 6 explains the order of execution and data migration
involved in the application. All arrows using the same shape
and line style are executed in parallel. Numbers on top of those
arrows symbolize the current steps. The figure also introduces
the components involved in the application.

In those experimentations, the algorithm does not introduce
the maximum degree of parallelism available in the computa-
tion of y = Ax+x. The most parallel version should compute
all blocks of the matrix independently and then reduce each
result. In this algorithm we merge the computation on each
block and the reduction. We introduce those constraints in
order to keep a simple application with an important number
of dependencies between tasks.

A. Experimentations with XtremWeb

Experimentations evaluate the YML Framework over
XtremWeb on two separated platforms. The first one aggre-

Product Component

Product Component

Product Component

Copy Component 2

2

2

3

321

3

2

1

3

3
1

1

1

4

4

4

2

3

4

2

3

4

2

3

4

Fig. 6. Application Execution Order withbc equal to 3

gates a dispatcher and 6 peers connected to each other on
a local network with an ethernet 100Mbit/s network. Peers
have the same hardware configuration except for one. With
this small platform we evaluate the YML Framework with an
important number of tasks on each peer. The second platform3

gathers one hundred and twenty-two peers. Hardwares are
heterogeneous as for the ethernet network speed composed
of both 10Mbit/s and 100Mbit/s links. The second platform
evaluates the global performances when the number of peers
is similar to the number of tasks ready for execution at a
time. Both of them are in production stage. Experimentations
have been done with normal use of the network and users
activities on computers. Table I describes computers hardware
composing both platforms.

The first series of experimentations is common to both
platforms. It supposed that matrixA was previously located
on peers. This hypothesis corresponds to the existence of
peer to peer storage mechanism or of peer to peer matrix
generation application. In our application theA matrix is
used only once during the block based matrix vector multi-
plication and each block ofA is also used only once. This
property permits us to merge the block generation and the
ycolN [j] = A[j, colN ]x[j] + ycolN−1[j] in the block based
matrix vector multiplication component. It is a way to simulate
data prefetching, matrix generator peer to peer application or
peer to peer data warehouse. The amount of communication
between peers consists only in bothx and y vectors. Figure
7 contains the YvetteML program used for this series of

3All computers are located at Polytech’Lille (EUDIL)



6

6 peers (PRiSM)
Count CPU Memory

5 Intel Pentium IV 1.8GHz 256MB
1 Intel Pentium III 800MHz 256MB

122 peers (EUDIL)
Count CPU Memory

28 Intel Pentium III 450MHz 128MB
28 Intel Celeron 2.2GHz 512MB
23 Intel Celeron 2.4GHz 512MB
15 AMD Duron 750MHz 256MB
14 Intel Celeron 600MHz 128MB
8 Intel Celeron 2GHz 512MB
8 Intel Celeron 1.4GHz 256MB
4 Intel Pentium IV 2.4GHz 512MB

TABLE I

COMPUTERSHARDWARE HOSTING A WORKER FOR BOTH PLATFORMS

experimentations. It is a direct transcription of the algorithm
described in figures 5 and 6.bs andbc appear respectively as
blockSizeandblockCount.

Table II shows results concerning these experimentations on
both platforms. The first two columns describe the size of the
problem expressed usingbc andbs as defined previously. The
third column contains the amount of data transferred over the
network during the computation. The fourth column displays
the number of tasks executed on the middleware. The fifth
column shows the time needed to compute the application on
the platform composed of six peers. The last column provides
the same information as the previous one for the platform at
EUDIL composed of one hundred and twenty two peers. The
size of communication does not integrate XtremWeb internal
needs. It corresponds to the sum of the size of data exchanged
between the node hosting XtremWeb Dispatcher and the peers
involved in the application computation. The information size
is not measured on the network, it is the theoretical result
which is a function of two parametersbc andbs.

y = Ax + x with A matrix generated in the
matrix vector multiplication component.
bc bs Com. Tasks 6 P 122 P
20 100 1Mb 440 6mn 6mn
50 100 4Mb 2600 18mn 17mn
20 1000 7Mb 440 6mn 6mn
50 1000 39Mb 2600 114mn 19mn
200 1000 615Mb 40400 14h 8h

TABLE II

PERFORMANCE FORy = Ax + x OF SIZE (bc ∗ bs)2

Those experimentations put forward that all the applications
generate an important number of tasks and compute in less
than a day’s work. The amount of data handled is important
due to the centralized organization of YML over XtremWeb,
which for each task implies that data go to and fro between the
node handling the YML Framework and workers. XtremWeb
does not provide mechanisms to associate a job to a worker. It
also implies that all peers do not necessarily participate in the
computation of an application. Both platforms evolve in the
same way except for the fourth row which corresponds to an
increased day’s work activity on the network and peer load.

1 #Compute y = Ax + x
2 #Declaration
3 #Number of block
4 const blockCount := 100;
5 #Size of block
6 const blockSize := 1000;
7 # a two dimension event set
8 event steps[2];
9 var VectorReal vResult[1]; #computation

10 var VectorReal vInput[1]; # vars
11 #Begin of the computation
12 par
13 par (i:=1, blockCount) do
14 #create x vector
15 compute GenVectorReal(
16 vInput[i], i, blockSize);
17 # notify the block i is available.
18 signal (steps[-1, i]);
19 end par do
20 // # parallel block separator
21 par (i:=1, blockCount) do
22 # initialize y: first step of
23 # the algorithm
24 wait (steps[-1, i]);
25 # y = x
26 compute Copy(vInput[i],vResult[i]);
27 signal (steps[0,i]) ;
28 end par do
29 //
30 par (i := 1, blockCount)
31 (j := 1, blockCount) do
32 wait(steps[i - 1, j]);
33 # local y = Ax + y
34 compute GenProduct(vResult[j],
35 vInput[j], i, j);
36 signal(steps[i, j]);
37 end par do
38 end par

Fig. 7. y = Ax + x YvetteML Program Used In First Series Of
Experimentations

Figure 8 displays the table II in a graphical way. The second
and third marks of both curves show how performances may
vary according to the distribution of the data and the numberof
tasks. The loss of performance forbc equal to 50 andbs equal
to 100 is due to latencies internal to the YML Framework
monitor and to XtremWeb internal functionning. It points at
how important matrix distribution is and thereforebc and bs

are critical parameters for performances.

In the second series of experimentations we separate the
matrix generation and the block based matrix vector multi-
plication. We add to our application a component with the
role of generating the matrix. In those experimentations, each
block of the matrix is generated randomly. The results would
have been similar if each block of the matrix had been
acquired from a data warehouse accessible using networks



7

20*100
50*100
20*1000
50*1000
200*1000

A Matrix size (bs*bc)

1

10

100

1000

T
im

e 
in

 m
in

ut
es

122 peers
6 peers

Fig. 8. Executions with Matrix previously located on peers

communication. This series of experimentations uses only
the first small platform. The node hosting the XtremWeb
Dispatcher in the second platform does not provide enough
storage capacity for those experimentations. Table III provides
results of experimentations. Columns are organized in the
same way as in figure II except for the last column.

y = Ax + x with A matrix generated in a
dedicated component.
bc bs Com. Size Tasks 6 peers
20 100 62Mb 840 9mn
50 100 387Mb 5100 85mn
20 1000 6Gb 840 11h
50 1000 37Gb 5100 61h

TABLE III

PERFORMANCEEVALUATION WITH A SEPARATEMATRIX GENERATOR OF

SIZE (bc ∗ bs)2

The amount of data exchanged during the computation is
really important. This is partially due to the actual limitation
of the YML Framework implementation. Currently, the appli-
cation data space is managed on the host running the YML
Framework or the XtremWeb Dispatcher. This implies the data
go to and fro between peers and this special node, which
is the bottleneck of the current implementation. Each block
of uncompressed matrix needs around 7MB withbc equal to
1000. The amount of data transferred on the network during
the generation of the matrix is really important. Integrating
advanced compression mechanism is really interesting in this
context. It increases the computation time on each peer on
one side and on the other side it decreases the amount of
data to transfert over the network. One block of theA matrix
is needed for each block based matrix vector multiplication
component call. The amount of data transferred puts forward
how important advanced storage mechanisms in peer to peer
middlewares are. Our future works are evaluating methods to
dispatch jobs according to static data located on specific peers.

As expected, performances evaluation displays the limita-

tion of the peer to peer architecture when the number of
communications is really important rated to the number of
calculus on each data. The applicationy = Ax + x does
not permit to overlap communication time with computation
time. The number of operations is around twice the number of
communications. However, the first series of experimentations
shows that it is possible to compute the application on huge
matrices while there is no need to migrate the matrix. Peer to
peer systems are based on cycle stealing, but current evaluation
models do not take into account the use of computers during
their idle time. So, a new evaluation model is needed.

V. CONCLUSIONS ANDPERSPECTIVES

The YML Framework provides support for parallel appli-
cations over peer to peer or grid middlewares. The user of
the framework can express and execute complex applications
using a component model and a graph description language.
This graph corresponds to a parallel application where each
node is a computation on the underlying middleware and each
edge is a communication. The component model ensures a
strict separation between information dedicated to a middle-
ware and information portable over many of them. The YML
Framework hides differences between execution layers so that
the user does not have to take into account specificities of the
middleware used to execute jobs during the development of
his application. Users can also benefit from the components
already available to build their own application. They do not
need to take into account peer to peer or grid middleware
specificities.

Experimentations show that the YML Framework generates
an important number of tasks automatically on a significative
number of peers. The Framework manages the execution of an
application self-adapting to the amount of resources available
in the middleware. We deliberately chose a difficult applica-
tion. The amount of computation involved in this application is
not important enough compared to the amount of communica-
tion. There are only a few operations for each data transferred.
This is the main reason for the large time needed to compute
not so large problems. However, while peer to peer systems are
mainly based on a cycle stealing paradigm, new performance
evaluation models need definitions for those systems. The
main objective of the YML Framework is to provide the user
with a way to create and execute communicating applications
automatically. The application well demonstrates the YML
Framework and puts forward current limitations of peer to
peer and grid middlewares.

Future works focus on different aspects of the YML Frame-
work. Its current organization is centralized. This introduces
a bottleneck in the application data space management. We
are evaluating different ways to distribute scheduling of the
application directly into tasks executed on the middleware
taking into account tasks neighborhood information only. We
also study how to add storage capacities on computation peers
and transform a task based scheduling to a data based one.
In parallel to those aspects internal to the YML Framework
we also evaluate the capacity of peer to peer architecture to
solve linear algebra numerical problems from an algorithmic



8

point of view in a first stage. In a second stage we will
adapt the YML Framework according to the evolution of the
services available into middlewares with the objective to obtain
acceptable performances for real applications.

VI. A CKNOWLEDGEMENTS

We would like to thank the French Ministry of Research
for its support to this project involved in the ACI GRID. We
also thank the Ecole Polytechnique de Lille for providing an
experimentation platform.

REFERENCES

[1] O. Lodygensky, A. Cordier, G. Fedak, V. Neri, and F. Cappello,
“Augernome and xtremweb: Monte carlos computation on a global
computing platform,”ECONF, vol. C0303241, p. THAT001, 2003.

[2] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain,
T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and
A. Selikhov, “Mpich-v: toward a scalable fault tolerant mpifor volatile
nodes,” in Proceedings of the 2002 ACM/IEEE conference on Super-
computing. IEEE Computer Society Press, 2002, pp. 1–18.

[3] I. Foster and N. Karonis, “A grid-enabled MPI: Message passing
in heterogeneous distributed computing systems,” inProceedings of
SC’98. ACM Press, 1998. [Online]. Available: citeseer.nj.nec.com/
foster98gridenabled.html

[4] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal,
and S. Tuecke, “Wide-area implementation of the Message Passing
Interface,” Parallel Computing, vol. 24, no. 12–13, pp. 1735–1749,
1998. [Online]. Available: citeseer.nj.nec.com/foster98widearea.html

[5] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, A.Bukovsky,
and J. J. Dongarra, “Fault tolerant communication library and
applications for high performance computing,” inLos Alamos Computer
Science Institute Symposium (to appear), 2003. [Online]. Available:
http://icl.cs.utk.edu/newspub/submissions/lacsi2003-ftmpi-fagg.pdf

[6] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova, “GridRPC: A remote procedure call API for
grid computing,” in the 3rd International Workshop on Grid
Computing (Grid’02), 2002, pp. 274–279. [Online]. Available:
citeseer.nj.nec.com/seymour02gridrpc.html

[7] S. Matsuoka, H. Nakada, M. Sato, and S. Sekiguchi, “Design issues of
network enabled server systems for the grid,”Grid Computing, 2000.

[8] M. Sato, M. Hirano, Y. Tanaka, and S. Sekiguchi, “OmniRPC: A Grid
RPC facility for cluster and global computing in OpenMP,”Lecture
Notes in Computer Science, vol. 2104, pp. 130–137, 2001. [Online].
Available: citeseer.nj.nec.com/sato01omnirpc.html

[9] S. S. Vadhiyar and J. J. Dongarra, “Gradsolve - rpc for high performance
computing on the grid,” inProceedings of the 9th International Euro-Par
Conference, vol. 2790. Springer-Verlag, 2003, pp. 394 – 403.

[10] S. Djilali, “P2p-rpc: Programming scientific applications on peer-
to-peer systems with remote procedure call,” inCluster Computing
and the Grid (CCGrid 2003), 3rd IEEE International Symposium
on, 2003. [Online]. Available: http://www.lri.fr/∼fedak/XtremWeb/
downloads/p2p-rpc.ps.tar.gz

[11] B. Chapman, M. Haines, P. Mehrotra, H. Zima, and J. V. Rosendale,
“Opus: A coordination language for multidisciplinary applications,”
Institute for Software Technology and Parallel Systems, University of
Vienna, Tech. Rep. ICASE Report 97-30, 1997. [Online]. Available:
citeseer.nj.nec.com/article/chapman97opus.html

[12] T. Rauber and G. Runger, “Scheduling of multiprocessortasks for
numerical applications,” inProceedings of the 8th IEEE Symposium
on Parallel and Distributed Processing, SPDP 96, 1996, pp. 474–481.
[Online]. Available: citeseer.nj.nec.com/rauber96scheduling.html

[13] ——, “A coordination language for mixed task and data parallel
programs,” in Selected Areas in Cryptography, 1999, pp. 146–155.
[Online]. Available: citeseer.nj.nec.com/rauber99coordination.html

[14] H. E. Bal and M. Haines, “Approaches for integrating task and
data parallelism,” IEEE Concurrency, vol. 6, no. 3, pp. 74–
84, July-September 1998. [Online]. Available: citeseer.nj.nec.com/
bal98approaches.html

[15] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor – a
distributed job scheduler,” inBeowulf Cluster Computing with Linux,
T. Sterling, Ed. MIT Press, October 2001.

[16] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, “The AppLeS
Parameter Sweep Template: User-level middleware for the grid,” in
Proceedings of the Super Computing Conference, 2000, pp. 75–76.
[Online]. Available: citeseer.nj.nec.com/casanova00apples.htm

[17] H. Casanova, M. Kim, J. S. Plank, and J. Dongarra, “Adaptive
scheduling for task farming with grid middleware,” inEuropean
Conference on Parallel Processing, 1999, pp. 30–43. [Online].
Available: citeseer.nj.nec.com/casanova99adaptive.html

[18] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood,
J.-C. Hugly, E. Pouyoul, and B. Yeager, “Project JXTA 2.0 super-
peer virtual network,” Project JXTA, Sun Microsystems, Inc, Tech.
Rep., 2003. [Online]. Available: http://www.jxta.org/project/www/docs/
JXTA2.0protocols1.pdf


