A Peer to Peer Computing Framework: Design an
Performance Evaluation of YML

Olivier Delannoy and Serge Petitdn

* PRiISM, Universi de Versailles Saint-Quentin, France
olivier.delannoy@prism.uvsq.fr

L INRIA / LIFL Universie de Lille, France
petiton@lifl.fr

Abstract— Peer to peer and grid systems provide attractive applications. Its goals are to help users during the devel-
middlewares to solve large numerical problems. The develep opmeint and execution steps. Through our work we aim at
ment, deployment and execution of applications using those yemonstrating the feasibility of using peer to peer and grid

middlewares suffer from the lack of well-adapted advanced N - o
tools. There is not any available solution to use the same systems for parallel communicating applications. In addit

application on two distinct middlewares. Our article presents {0 this we design easy-to-use tools in order to manage un-
the YML Framework which provides supporting tools to design derlying middlewares. This article focuses on performance

and execute portable parallel applications over large scal peer evaluation with a numerical application. The performance
to peer and grid middlewares. The YML Framework defines q\qyation consists in two series of experimentations. The

a new parallel programming language called YvetteML which . L
is composed of a graph language and a component model first one corresponds to the hypothesis that the application

We evaluate the performance of our framework with a simple data are previously generated by a peer to peer application o
numerical application using XtremWeb as a middleware. available on a distributed persistent storage. The secerielss
Index Terms— Parallel and Distributed Computing, Peer to ©Of experimentations integrates the peer to peer applicatio
Peer, Matrix Computation generating the matrix involved in the computation.
The second section presents the solution in use on the
I. INTRODUCTION different grid and peer to peer middlewares through user’s
Point of. It mainly deals with tools and libraries availalite

Peer to peer and grid systems are middlewares that paoe'sign parallel applications. The third section introdutiee

vide a set Of. Services t(.) aggregate an |mpo_rt'c_1nt r.]umIOFI{/IL Framework. It also shows how it interacts with grid and
of resources inside a unique system. Hence it implies the . _— .

. ; : o .~ péer to peer middlewares and presents the first implementati
necessity of managing heterogeneity, scalability, dyearand

fault recovery. Projects likseti@home and distributed.net using the XtremWeb peer to peer system. The fourth section

have demonstrated the validity of solving some numeriCrc?lates to performance evaluation. The last section dissus
L y 9 . n the benefits of this framework and presents future works
applications on peer to peer systems. The Auger project

uses XtremWeb to simulate the highest energy cosmic rgﬁ?%ﬁgagrgs project and the algorithmic well-adaptesiton

showers. The three projects hamed above are based on peer 0
peer systems and they all share a property. Each parallel tas
does not exchange any data during the computation. [l. RELATED WORK

NO reliable tools are currently avaﬂab!e o help the user Parallel architectures mainly provide two ways of designin
during the development of parallel applications on a large

. arallel applications, namely the Message Passing laterfa
scale architecture. As a result the user has to solve by hi PP y 9 g

off problems such as heterogenaity. fault tolerance UFeso iPI) library and the OpenMP library. OpenMP is devoted
selt p S su S >rogenetty, fau ceu 0 systems including shared memory functionalities. Never
management and scheduling for each new application.

) . . e %Iess, large scale architecture software does not dlyrren
dynar_mcs of such architectures increase the glopgl dificul rovide any support regarding shared memory. MPI is tacgete
of using those platforms. Those difficulties specific to ean‘%

. . 1o distributed memory. The current MPI implementations
middleware should not have to be solved for each appl'cat'oapvailable on high performance parallel computers are géiger

Advanced tools should solve most of th? comple_xity autom%—e 1.1 standard. This standard faces a limitation. Indeeckt
ically and transparently for the user by introducing mord ans no way to adapt the number of participants in the com-

more services in the execution layer. munication during the execution. The number of processors

we de5|g_ned the YML Fra_lmework SO as to provide so fvolved in a computation is fixed at the beginning of the
tools that will help users design and execute complex pral xecution. On grid and peer to peer systems, the amount

http: // seti at home. ssl . ber kel ey. edu/ of available resources may c_hange quickly. Therefore, grid
2htt p: // waw. di stri but ed. net/ and peer to peer implementations of the MPI standard suffer

from the limitation of the fixed number of participants. Therbetween participants. In such applications parallelisathes
are two ways of solving fault tolerance problems inherent its maximum because there is not any synchronization betwee
large scale architecture softwares. MP| implementatipngot participants. It consists of the same computation executed
manage faults automatically. It is the case of implemeonsti independently on each processor with a different set ainit
such as MPICH-V [2] or MPICH-G [3], [4]. The other parameters. It is calledlask farming The AppLeS Parameter
approach consists in informing the application that a probl Sweep Template project [16], [17] provides users with a way
occurred and letting the application apply a recovery piace of executing a set of tasks on a grid middleware. That set
or not. It means that the number of participants in thoseking described using XML input defining the job requests. The
of implementations may change during the execution. The Fiaftware handles requests trying to optimize differertecia
MPI [5] is an example of such implementations. such as data migration, total execution time and the number
An emerging standard for parallel computing on grid andf tasks executed at the same time. All numerical problems
peer to peer architectures currently experimented angjdedi cannot be solved using the same techniques. Some apptisatio
is a grid enabled Remote Procedure Call (RPC) API. A gromeed communication between participants.
ing number of projects implement RPC mechanisms to address$n order to develop peer to peer applications the JXTA [18]
jobs submission on middlewares. At the moment the most ugeject designed a set of protocols as basic blocks of peer
and mature ones are GridRPC [6], [7] and OmniRPC [8]. The peer communities. Those blocks provide a generic peer to
GridRPC seems to be the future standard APl common peer framework to design applications. JXTA also provides
numerous grid and peer to peer middlewares. An RPC bag®dtocols for resources discovery, queries, communigatio
approach is also used in Netsolve and its implementation owtween participants using a pipe, etc. This set of prosocol
grid middlewares: GrADSolve [9]. Applications using thoseand the corresponding implementation available define the
kinds of API are mainly based on two different parts: onanderlying infrastructure for a peer to peer network. Ondbp
the one side a client control program and middleware refrose protocols, developers can create applications. Xha J
istered services or functions on the other side. The XtremWproject creates a multiple applications layer for peer terpe
middleware provides the P2P-RPC [10] implementation. Tlapplications and provides useful mechanisms to design new
RPC paradigm addresses the problem of the fixed numberapiplications. Nevertheless, it does not directly provideay
participants. However, communication between partidip@ to execute parallel applications. It does not solve proklem
not really integrated to the model. It is rather difficult inat such as schedule of applications, deployment or resource
distinct RPC calls to exchange data during the computationailocation. It is mainly a general set of protocols for peer t
both RPC. peer applications. JXTA wants to be as general purpose as
An alternative approach used in some projects is baspdssible.
on coordination languages. Those languages distinguish tw
different aspects. On the one hand, the flow control is to be
found and on the other hand there are computation blocks.
These two clearly separated aspects improve the reagabilitLarge scale architectures, mainly grid and peer to peer
and the computer-based recognition of the program but tisigstems, aggregate heterogeneous computers in a complex se
implies the knowledge of two languages: the one used @b computation resources. In such an environment, reseurce
describe control flow and the one used for computation blocleppear and disappear rather frequently. Users cannotéandl
The flow control acts like a control program in Netsolve or ithe dynamics of the architecture manually. When they want
RPC based applications. As to the computation blocks, th&yuse peer to peer applications, they must be aware that they
are usually written using standard generalized programminannot make any hypotheses on the organization and on the
languages like C/C++, JAVA or Fortran. This approach haavailability of one or a group of resources. This implied tha
been used in Opus [11] and TwoL [12], [13]. The coordinatioapplication must adapt its computation itself to the avdda
language maps the top algorithm structure and the compatatiesources. Another problem occurring with such archirestu
maps the simple tasks. Coordination languages have bedn Usss within the heterogeneity of the hardwares and of thalloc
to separate data parallelism from tasks parallelism [L#E Tsoftwares available on each participant.
redundant works associated with communication are handledrhe YML Framework aims at providing the user with a
automatically. DagMan provides a runtime support for Candsimple way to develop and execute applications on peer to
[15] pool clusters. DagMan enables the user to describepaer and grid middlewares. One role of this framework is
graph of tasks. It is not exactly a coordination language define an abstraction for middlewares, hiding differesnce
because it does not include the task description aspect bhotong them and using this abstraction to remain portable
it offers capabilities of expressing the coordination begw over multiple middlewares. The user can easily develop a
tasks. complex parallel application which may transparently exec
Previously introduced APl are ongoing works and activen multiple middlewares during one application execution.
projects. The MPI approach is well suited to numerical proli-igure 1 reflects the project’s organization. Users intendit
lem solving due to the amount of existing applications ready the framework using a web ASP or any client of the YML
use. However, there are no dedicated tools available tdajgveFramework. Using the ASP, one can define components or
applications on peer to peer and grid systems. It is not a-praxecute complex applications. A set of directories helphén
lem as long as we use such systems without communicatibevelopment of its application providing expert knowledge

I1. YML F RAMEWORK

Expert
knowledge

Add Components
Add, Use, Combine Component;
q WEB ASP) Add, Use, Combine Data Typ!
A Ej Development Directory Execution Directg

Application |Application | Execution Data Type
¢]

isa> Abstract realize <| | Implementation

Execution| | Creation | |Monitoring

Component| Component

Middleware Abstraction layer

YML Framework Graph
Component| 299regae >
Y

Y Y ‘

A
XtremWeb N|nf NetSOIVe Interact Before Execution /
Interract During Execution

,.
Fig. 1. Project Organisation YvetteML | Appiicaions | Real Time
Compiler Scheduler

YML Framework

An abstraction of middlewares has to provide a set of
services to the user application, which should be availaly 5 components Model and Directories
on each middleware or easy to simulate on the ones which
are not able to provide one of those services. We design our
abstraction around a component model linked to a graph dgiddleware specific information such as binary application
scription language. The graph language is used to link beget Figure 2 describes the contents of each directory and the
components involved in the execution of an application. Theay the user can interact with both of them. The figure
YML Framework defines a component as an encapsulationai$o introduces two modules composing the YML Framework.
simple tasks nodes of a directed acyclic graph represeatingThe compiler takes in input the YvetteML language and
complex application. Components exchange data using defingnerates new components, applications and data typeg goin
input and output channels. All components are registered inin directories or to the real time scheduler. The scheduler
directories. There are two levels of directories inside¥ML controls the execution of applications. Both modules wél b
software. A directory is a list of components separated inttescribed further on.
different namespaces. A global one aggregates all comp®nen During the execution stage, the execution directory islgole
available to any user. It can only be modified by privilegedsed. This straight separation enhances portability ofjkbigal
users. Otherwise entries in each normal user’s namespacesgstem and makes it possible to postpone some important
reserved to the current user. He manages his own namespawsices until execution time depending on the current state
and the information contained in it can only be accessefl the middleware. Components are separated into three cat-
by himself. The namespace separation is common to beifjories. Those categories are introduced to solve differen
directories but the contents of these differ. problems like reusability, portability and adaptability.

The YML Framework component model defines three dif- The graph description language provides constructions to
ferent component classes as shown in figure 2. Abstrai@scribe a parallel application composed of previouslsoint
Components and Graph Components are used to provileeed components. Its goal lies in describing dependencies
independent application graph descriptions. Implemattat between components on one side and parallelism in the
Components are binary applications executed on middleyarapplication on the other side. A graph is a comprehensive
These are described using an automatically generated@hkeleepresentation of a template for a parallel algorithm. The
and a user provided computation code. This computation cagdenplate is filled using a set of components corresponding
can be written using languages such as C/C++, Fortrantora specific application.

JAVA depending on the availability of skeleton generators To conclude the YML Framework overview, we present an
for the targeted language. The computation code does egample of an YvetteML application. This example mainly
include the communication mechanism, data encoding apresents the graph description language aspect. It doeeabt

other services used to manage heterogeneity of the peeeto peith components description. Figure 3 contains the YvetteM
or grid middleware. Components are described using XMbrogram. The XML document begins with the root element
Generators are written using XSLT stylesheet transfoonati yml providing user accounting information. Accounting infor-

The first directory is used for the development stage. thation is used to manage namespace in the YML Framework.
contains objects needed during the creation of an apmitatiAn application always starts with application element. This
and can be shared between many underlying middlewaresexample hides details concerning application management
also encompasses a set of blocks usable to design applisatisuch as the name used to identify results. The YvetteML
The content of the Development Directory does not depetahguage used to describe graphs is contains insthece
on the underlying middlewares. The second directory coataielement. It contains two parts. Declarations stand firseyTh

provide construction to define constants, events and \agab YvetteML into fully expanded graphs ready for executionrove
Declarations help the compiler to validate the applicatiathe underlying middleware. Figure 4 provides an overview of
before its execution. The second part of an YvetteML aphe inside of the YML Framework. The two main modules
plication consists in statements. They provide constuasti composing the YML Framework are theompiler and the

to call components, create parallel sections and syncheonscheduler The compiler ensures portability while the sched-
executions of parallel sections.

O©Coo~NOULr, WNE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Fi

g

<?xm version="1.0"7?>
<I--
top level elenent for
YvetteM. program
-->
<ym wuser="1ogin" password="pass">
<appl i cation>
<sour ce>
#Decl .: const integer val ue
const probl enSize : = 10000;

#Decl .: event array of dinmension 2
event evt[2];

#Decl .: variable of type Matri xRea
var MatrixReal vRes[1];
#Statenments start after declarations
par # a parallel section
an iterator based paralle
par (i:=1, problentize) do
a conponent cal
conpute fill MatrixReal (vRes[i],
probl eni ze, i);
notify an event to the whol e
application
signal (evt[i,1]);
end par do
/'l # Parallel block separator
Block until the events naned
evt[10,1] and evt[11, 1] are
notified.
wait(evt[10,1] and evt[11,1]);
a conponent cal
comput e Sumivat ri xReal (vRes[10],
vRes[11]);

section

#. ..
#l/
o,
end par
</ sour ce>
</ application>
</ym >

. 3. YvetteML Application Template

A. Implementation

The YML Framework interacts with the user using a condecorated using an execution condition and a post execution
piler. This one translates components into binary apptioat events set. This condition is a boolean expression depgndin
and directory entries. It also translates graph descriptin on the events involved in the computation of an application.

uler provides execution management. It analyses graphs fro
the compilerand manages dependencies for the middleware.
The schedulerinteracts with the middleware using both tasks
launcherandretriever modules. The YML Framework acts as
a normal client for the execution layer.

middleware

Fig. 4. YML Software Organization

The XtremWeb middleware is a peer to peer environment
which provides support for binary applications execution a
deployment. The YML Framework simulates communication
between workers defining a centralized shared memory mech-
anism. This shared memory is a persistent storage used to
store partial results of each job executed on the XtremWeb
middleware. The shared memory can be considered as an in-
cremental checkpoint of the computation data. This cengdl
implementation introduces a bottleneck. For each componen
execution, data come from the shared memory located on the
same computer as the YML Framework and go back after
updates to the YML Framework hosting nodes so that partial
results should be available to dependent component execu-
tion. There is not any direct communication between peers.
Obviously it is transparent for the user ; so if a middleware
provides built-in support for communication between waoske
the YML Framework backend dedicated to this middleware
overrides the YML general functionning in order to benefit
from these functionnalities. The YML Framework scheduler
modules monitor the state of the XtremWeb middleware in
order to accurately create job requests. Dependenciegbptw
tasks are managed using a table of events. Each YML task is

Once the boolean expression is true, the task is ready for
execution. After the computation on the middleware, alintse Copy Component

composing the execution events set associated with the task product component
are notified making the application progress. e

Product Component
-———

IV. EXPERIMENTATIONS _Product Component

We evaluate our software using the application Az + «
where A is a square dense matrix composed of real numbers
andz andy are both vectors of real numbers. Supposing the
A matrix does not fit in the memory of a peer, we dividen
a set of blocks. Each block is itself a square matrix. We define
bs as the size of one block ang as the number of blocks
on one dimension. The number of elementsdak (bs * be)?.
Vectors are also divided in blocks. The size of each block
is bs too. The algorithm of the application shown in figure
5 explains its steps. The first parallel section generatéls an
duplicates the initial vector. The copy stands for the aiti
value of the resulting vector. After this parallel sectidhe ‘Z 3 /
resulting vector contains the initial copy of The second 2 ===

parallel section works in columns. Each column of the matrix :' | 4

is computed before the next column and the resulting vestor i ! ! I 2

updated after each step. In figurés5does not appear because 4 L I S 3_ .= V/

it only has an effect during the execution of the block matrix 4

vector multiplication component at line 9 of the algorithm.

The YvetteML program will illustrate this point in figure 7. ! 2 8

1 in parallel do Fig. 6. Application Execution Order withc equal to 3

2 fori from 1 to be do

2 eng[flt])r_ oy gates a dispatcher and 6 peers connect_ed to each other on
5 end do a local network with an etherr_1et 1QOMb|t/s network. Peers
6 fori from 1 to be do ha_lve the same hardware configuration except for one. With
7 in parallel do _th|s small platform we evaluate the YML Framework with an

8 for j from 1 to be do important number of tasks on each peer. The second platform
9 VIil = Vii] + Alijl * il gathers one hundred and twenty-two peers. Hardwares are
10 end for ' heterogeneou; as for the et_hern_et network speed composed
11 end do of both 10Mbit/s and 100Mbit/s links. The second platform
12 end for evaluates the global performances when the number of peers

is similar to the number of tasks ready for execution at a
time. Both of them are in production stage. Experimentation
have been done with normal use of the network and users

Figure 6 explains the order of execution and data migrati@tiVities on computers. Table | describes computers harelw
involved in the application. All arrows using the same shap@MPosing both platforms. o
and line style are executed in parallel. Numbers on top afgho '€ first series of experimentations is common to both
arrows symbolize the current steps. The figure also intreslu@latforms' It s_upposed th{?‘t matrit was previously I(_)cated
the components involved in the application. on peers. This hypothesis co_rresponds to the existence _of

In those experimentations, the algorithm does not intreduB€€T 1O Peer storage mechanism or of peer to peer matrix
the maximum degree of parallelism available in the computdeneration application. In our application thé matrix is
tion of y = Az -+ . The most parallel version should comput&/S€d only once during the block based matrix vector multi-
all blocks of the matrix independently and then reduce eaBfication and each block ofl is also used only once. This
result. In this algorithm we merge the computation on ea@fOPeYy permits us to merge the block generation and the
block and the reduction. We introduce those constraints il = Alj, colN]2[j] + yeov—1j] in the block based

order to keep a simple application with an important numb&atrix vector multiplication component. Itis a way to simté
of dependencies between tasks. data prefetching, matrix generator peer to peer applicaiio

peer to peer data warehouse. The amount of communication
between peers consists only in bathand y vectors. Figure

A. Experimentations with XtremWeb . ;)
,) 7 contains the YvetteML program used for this series of
Experimentations evaluate the YML Framework over

XtremWeb on two separated platforms. The first one aggre3All computers are located at Polytech'Lille (EUDIL)

Fig. 5. Algorithm of they = Az + x Application

6 peers (PRiSM) 1
Count CPU Memory 2
5 | Intel Pentium IV 1.8GHz | 256MB 3

1 | Intel Pentium Ill 800MHz | 256MB
122 peers (EUDIL) 4
Count CPU Memory 5
28 | Intel Pentium Il 450MHz | 128MB 6
28 Intel Celeron 2.2GHz 512MB 7

23 Intel Celeron 2.4GHz 512MB
15 AMD Duron 750MHz 256MB 8
14 Intel Celeron 600MHz 128MB 9
8 Intel Celeron 2GHz 512MB 10

8 Intel Celeron 1.4GHz 256MB
4 | Intel Pentium IV 2.4GHz | 512MB 11

=
N

TABLE | 13
COMPUTERSHARDWARE HOSTING A WORKERFOR BOTH PLATFORMS 14

15
16

experimentations. It is a direct transcription of the aition 17

described in figures 5 and 6s andbc appear respectively asig
blockSizeand blockCount
. . .20

Table Il shows results concerning these experlmentatlnns?1
both platforms. The first two columns describe the size of trbe2
problem expressed usirtg andbs as defined previously. The 3
third column contains the amount of data transferred over t
network during the computation. The fourth column display;
the number of tasks executed on the middleware. The fi
column shows the time needed to compute the application
the platform composed of six peers. The last column providg
the same information as the previous one for the platformfg
EUDIL composed of one hundred and twenty two peers. T

#Conpute y = AX + X
#Decl arati on
#Nunber of bl ock
const bl ockCount := 100;
#Si ze of bl ock
const bl ockSi ze := 1000;
a two di mension event set
event steps[2];
var VectorReal vResult[1]; #conmputation
var VectorReal vinput[1l]; # vars
#Begi n of the conputation
par
par (i:=1, blockCount) do
#create x vector
conput e GenVect or Real (
vinput[i], i, blockSize);
notify the block i is avail able.
signal (steps[-1, i]);
end par do
/'l # parallel block separator
par (i:=1, blockCount) do
initialize y: first step of
the algorithm
wait (steps[-1, i]);
#y =X
conpute Copy(vlinput[i],vResult[i]);
signal (steps[0,i]) ;
end par do
11

size of communication does not integrate XtremWeb intern par E! f 1 E: ggtgagig do
needs. It corresponds to the sum of the size of data exchanggd vai Jt (st_e ;;[i -1 1)
between the node hosting XtremWeb Dispatcher and the pe 55 # | ocal b - Ax +’ 1
involved in the application computation. The informatiores y = y .
. o . 4 conput e GenProduct(vResult[j],
is not measured on the network, it is the theoretical res%[S . T
i : vinput[jl, i, j);
which is a function of two parametebs andbs. : N
36 signal (steps[i, j]1);
y = Az + = with A matrix generated in the 37 end par do
matrix vector multiplication component. 38 end par

be bs Com. Tasks 6P| 122 P

20 100 1Mb 440 6mn 6mn

50 100 4Mb 2600 18mn | 17mn

20 | 1000 7Mb 440 6mn 6mn

50 | 1000 | 39Mb 2600 | 114mn| 19mn

200 | 1000 | 615Mb | 40400 14h 8h
TABLE Il

PERFORMANCE FORy = Ax + z OF SIZE (bc * bs)?

Fig. 7.y = Ax + z YvetteML Program Used In First Series Of
Experimentations

Figure 8 displays the table Il in a graphical way. The second
and third marks of both curves show how performances may
vary according to the distribution of the data and the nunolber
tasks. The loss of performance farequal to 50 ands equal

Those experimentations put forward that all the applicetio t© 100 is due to latencies internal to the YML Framework
generate an important number of tasks and compute in |&agnitor and to XtremWeb internal functionning. It points at
than a day’s work. The amount of data handled is importah@W important matrix distribution is and therefase and bs
due to the centralized organization of YML over XtremWelAre critical parameters for performances.
which for each task implies that data go to and fro between theln the second series of experimentations we separate the
node handling the YML Framework and workers. XtremWehatrix generation and the block based matrix vector multi-
does not provide mechanisms to associate a job to a workeplitation. We add to our application a component with the

also implies that all peers do not necessarily participatié

role of generating the matrix. In those experimentatioashe

computation of an application. Both platforms evolve in thblock of the matrix is generated randomly. The results would
same way except for the fourth row which corresponds to &ave been similar if each block of the matrix had been
increased day’s work activity on the network and peer loadcquired from a data warehouse accessible using networks

tion of the peer to peer architecture when the number of
communications is really important rated to the number of
calculus on each data. The applicatipn= Ax + x does
not permit to overlap communication time with computation
time. The number of operations is around twice the number of
communications. However, the first series of experimenmtati
shows that it is possible to compute the application on huge
matrices while there is no need to migrate the matrix. Peer to
peer systems are based on cycle stealing, but current éealua
—122 peers models do not take into account the use of computers during
1= i i i i ‘06 peers their idle time. So, a new evaluation model is needed.

1000

1007

Time in minutes

D B B B .
(24 (%] @) % ‘ZOO V. CONCLUSIONS ANDPERSPECTIVES
[

The YML Framework provides support for parallel appli-
cations over peer to peer or grid middlewares. The user of
the framework can express and execute complex applications
Fig. 8. Executions with Matrix previously located on peers using a component model and a graph description language.

This graph corresponds to a parallel application where each

node is a computation on the underlying middleware and each
communication. This series of eXperimentationS uses OTéMge is a communication. The Component model ensures a
the first small platform. The node hosting the XtremWebtrict separation between information dedicated to a reiddl
Dispatcher in the second platform does not provide enougiare and information portable over many of them. The YML
storage capacity for those experimentations. Table IIVioks Framework hides differences between execution layersato th
results of experimentations. Columns are organized in tfg user does not have to take into account specificitieseof th
same way as in figure Il except for the last column. middleware used to execute jobs during the development of
his application. Users can also benefit from the components
already available to build their own application. They dd no

A Matrix size (bs*bc)

y = Az + x with A matrix generated in a
dedicated component.

e | bs | Com. Size| Tasks | 6 peers need to take into account peer to peer or grid middleware

20 | 100 62Mb 840 9mn specificities.

gg 1lc?c?o 322\213 5;314%0 851”11;‘ Experimentations show that the YML Framework generates

50 1000 37Gb 5100 1h an important number of tasks automatically on a S|gn|_f|eat|v
TABLE Il number of peers. The Framework manages the execution of an

application self-adapting to the amount of resources alvkal
in the middleware. We deliberately chose a difficult applica
tion. The amount of computation involved in this applicatis
not important enough compared to the amount of communica-
tion. There are only a few operations for each data traresferr
The amount of data exchanged during the computationTi&is is the main reason for the large time needed to compute
really important. This is partially due to the actual lintitea not so large problems. However, while peer to peer systeens ar
of the YML Framework implementation. Currently, the applifmainly based on a cycle stealing paradigm, new performance
cation data space is managed on the host running the YMialuation models need definitions for those systems. The
Framework or the XtremWeb Dispatcher. This implies the dataain objective of the YML Framework is to provide the user
go to and fro between peers and this special node, whiefith a way to create and execute communicating applications
is the bottleneck of the current implementation. Each blo@utomatically. The application well demonstrates the YML
of uncompressed matrix needs around 7MB withequal to Framework and puts forward current limitations of peer to
1000. The amount of data transferred on the network duripger and grid middlewares.
the generation of the matrix is really important. Integrgti Future works focus on different aspects of the YML Frame-
advanced compression mechanism is really interestingisn tivork. Its current organization is centralized. This intiods
context. It increases the computation time on each peer arbottleneck in the application data space management. We
one side and on the other side it decreases the amountad evaluating different ways to distribute scheduling haf t
data to transfert over the network. One block of thenatrix application directly into tasks executed on the middleware
is needed for each block based matrix vector multiplicatidaking into account tasks neighborhood information onlg W
component call. The amount of data transferred puts forwaatso study how to add storage capacities on computatiors peer
how important advanced storage mechanisms in peer to paed transform a task based scheduling to a data based one.
middlewares are. Our future works are evaluating methodsltoparallel to those aspects internal to the YML Framework
dispatch jobs according to static data located on specificspe we also evaluate the capacity of peer to peer architecture to
As expected, performances evaluation displays the limitsslve linear algebra numerical problems from an algorithmi

PERFORMANCEEVALUATION WITH A SEPARATEMATRIX GENERATOR OF
SIZE (be * bs)?

point of view in a first stage. In a second stage we wifle]
adapt the YML Framework according to the evolution of the
services available into middlewares with the objectivelitam
acceptable performances for real applications. [17]

VI. ACKNOWLEDGEMENTS

We would like to thank the French Ministry of Researcr[118]
for its support to this project involved in the ACI GRID. We
also thank the Ecole Polytechnique de Lille for providing an
experimentation platform.

REFERENCES

[1] O. Lodygensky, A. Cordier, G. Fedak, V. Neri, and F. Cdfpe
“Augernome and xtremweb: Monte carlos computation on a ajlob
computing platform,"ECONF, vol. C0303241, p. THAT001, 2003.

[2] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Bak, C. Germain,
T. Herault, P. Lemarinier, O. Lodygensky, F. Magniette, \éri\ and
A. Selikhov, “Mpich-v: toward a scalable fault tolerant nfpr volatile
nodes,” inProceedings of the 2002 ACM/IEEE conference on Super-
computing |EEE Computer Society Press, 2002, pp. 1-18.

[3] I. Foster and N. Karonis, “A grid-enabled MPI: Messagesgag
in heterogeneous distributed computing systems,Pioceedings of
SC'98 ACM Press, 1998. [Online]. Available: citeseer.nj.neox
foster98gridenabled.html

[4] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, GirGikathukal,
and S. Tuecke, “Wide-area implementation of the MessageiriRps
Interface,” Parallel Computing vol. 24, no. 12-13, pp. 1735-1749,
1998. [Online]. Available: citeseer.nj.nec.com/fos8w@earea.html

[5] G.E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca B&kovsky,
and J. J. Dongarra, “Fault tolerant communication librargd a
applications for high performance computing,’lins Alamos Computer
Science Institute Symposium (to appeaP03. [Online]. Available:
http:/ficl.cs.utk.edu/newpub/submissions/lacsi2003- ftmpi-fagg.pdf

[6] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova, “GridRPC: A remote procedure call APl for
grid computing,” in the 3rd International Workshop on Grid
Computing (Grid’'02) 2002, pp. 274-279. [Online]. Available:
citeseer.nj.nec.com/seymour02gridrpc.html

[7] S. Matsuoka, H. Nakada, M. Sato, and S. Sekiguchi, “Dessgues of
network enabled server systems for the gridfid Computing 2000.

[8] M. Sato, M. Hirano, Y. Tanaka, and S. Sekiguchi, “OmniRRCGrid
RPC facility for cluster and global computing in OpenMR.Ecture
Notes in Computer Scienceol. 2104, pp. 130-137, 2001. [Online].
Available: citeseer.nj.nec.com/satoOlomnirpc.html

[9] S.S. Vadhiyar and J. J. Dongarra, “Gradsolve - rpc fohlpgrformance
computing on the grid,” ifProceedings of the 9th International Euro-Par
Conferencevol. 2790. Springer-Verlag, 2003, pp. 394 — 403.

[10] S. Dijilali, “P2p-rpc: Programming scientific appligats on peer-
to-peer systems with remote procedure call,” Qiuster Computing
and the Grid (CCGrid 2003), 3rd IEEE International Sympasiu
on, 2003. [Online]. Available: http://www.Iri.frf fedak/XtremWeb/
downloads/p2p-rpc.ps.tar.gz

[11] B. Chapman, M. Haines, P. Mehrotra, H. Zima, and J. V. dRdsle,
“Opus: A coordination language for multidisciplinary ajsptions,”
Institute for Software Technology and Parallel Systemsivérsity of
Vienna, Tech. Rep. ICASE Report 97-30, 1997. [Online]. halale:
citeseer.nj.nec.com/article/chapman97opus.html

[12] T. Rauber and G. Runger, “Scheduling of multiprocestasks for
numerical applications,” inProceedings of the 8th IEEE Symposium
on Parallel and Distributed Processing, SPDP, 9996, pp. 474-481.
[Online]. Available: citeseer.nj.nec.com/rauber96stthimg.html

[13] ——, “A coordination language for mixed task and data gllat
programs,” in Selected Areas in Cryptographyl999, pp. 146-155.
[Online]. Available: citeseer.nj.nec.com/rauber99ctioation.html

[14] H. E. Bal and M. Haines, “Approaches for integrating ktaand
data parallelism,” IEEE Concurrency vol. 6, no. 3, pp. 74—
84, July-September 1998. [Online]. Available: citesgarat.com/
bal98approaches.html

[15] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Cond — a
distributed job scheduler,” iBeowulf Cluster Computing with Linux
T. Sterling, Ed. MIT Press, October 2001.

H. Casanova, G. Obertelli, F. Berman, and R. Wolski, €TAppLeS
Parameter Sweep Template: User-level middleware for thd,’ gn

Proceedings of the Super Computing Conferer2@00, pp. 75-76.
[Online]. Available: citeseer.nj.nec.com/casanova@leshtm

H. Casanova, M. Kim, J. S. Plank, and J. Dongarra, “Adaept
scheduling for task farming with grid middleware,” i&uropean
Conference on Parallel Processingl999, pp. 30-43. [Online].
Available: citeseer.nj.nec.com/casanova99adaptivet.ht

B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Hagud,

J.-C. Hugly, E. Pouyoul, and B. Yeager, “Project JXTA 2.0 eup
peer virtual network,” Project JXTA, Sun Microsystems, ,Intech.
Rep., 2003. [Online]. Available: http://www.jxta.orgfgect/www/docs/
JXTA2.0protocols1.pdf

