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Abstract— In this paper we propose a framework dedicated to
the development and the execution of parallel applications over
large scale global computing platforms. A workflow program-
ming environment will be introduced, based on a new workflow
language YvetteML and a Human-GRID middleware interface
called YML. This language allows description of different kind of
components to be allocated to GRID resources. Depending of the
different targeted resources, the components may be associated
to computation, data migration or other resource controls. YML
is designed to have several back-ends for different middleware,
as a well-designed front end is developed independently of
any dedicated middleware. In order to make the framework
immediately useful, YML comes with pre-configured interfaces
to some numerical routines and a numerical library for iterative
linear algebra methods. We will present experimentations done
on some large scale platforms using a peer to peer middleware
with a numerical application case study.

I. INTRODUCTION

An important number of GRID and peer to peer middleware
are now mature enough for use in production. The number
of applications relying on a GRID as run-time environment
increases. However the lack of standard in GRID programming
interface forces the application development to be tightly
coupled with the chosen middleware. The selection of a run-
time support and the development costs associated with the
release of an application have a crucial role in the choice of
the programming environment. The GRID complexity requires
the use of high level tools hiding parts of the process to the
users.

YML provides a framework dedicated to the development
and the execution of parallel applications over large scale
middleware [1]. YML includes a workflow language named
YvetteML used in the description of applications and their
executions. YML furnishes a compiler and a just-in-time
scheduler for YvetteML . It allows to manage the execution
of the application over the underlying parallel architecture
which can be a peer to peer or a GRID middleware. The
specificity of each middleware is hidden to the user through
YML. This framework provides workflow engine capabilities
on top of a global computing platform. YML is designed
to act transparently for complex applications using numerous
communications, code coupling, etc on dynamic platforms.

YML is implemented using a component-oriented approach
to help the integration of existing numerical library. In order to
illustrate the use of YML we adapt an existing object oriented
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for the computation of linear algebra problem. Linear
a Kernel (LAKe) is a class library developed using an
oriented approach in order to enable very good code
or both sequential and parallel applications. LAKe de-
cuses on the development of iterative methods and does
vide simple mechanism to support hybrid methods. The
onsist in coupling several numerical methods (called
hods) in order to decrease the number of iterations
d to find the results. This kind of methods is well

to global computing environment. This is because they
lt tolerant, coarse grain parallelism, have asynchronous
nications and benefit from hardware heterogeneity.
wing this introduction, the second section discusses the
ions for proposing YML and make a quick overview
r related projects. The third section presents YML and
its internal leaving for the fourth section the discussion
YML interact with middleware and makes use of them.
L default back-end enables the use of the XtremWeb

ware. The interaction between YML and XtremWeb is
ed in this section. The fifth section shows an example
ication from linear algebra. In order to illustrate the
YML for development and execution, this application
led in the section. The last section concludes the paper
sents our future work.

II. MOTIVATIONS

performance computers are mostly used for scientific
ing. Numerical application requires a lot of computing
and takes time even on high performance computers.
ous simulation problems issued from domain such as
r prediction, climate study, and aircraft design are
ly translated to linear algebra problems. Such methods

plex and require a good knowledge of the numerical
, the computing methods and the distribution tech-
For these applications, the design and development
level tools which hides the complexity of the global

ing middleware become necessary.
programming of high performance computers has been
ult task for years. At the beginning, most of the
c computing was rested on vendor solution specific

architecture of high performance computers. The
on of two standard named MPI and OpenMP changes
he application development and eases the migration
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from one architecture to another. The growing of clusters and
the success of distributed memory systems are mostly due to
the MPI standard and its adoption by a large community of
users. Several approaches were lengthily used in distributed
environments but not in the context of high performance
computers such as Remote Procedure Call (RPC) mechanism
used in Network File System.

The generalization of the distributed computation systems
leads to the global computing environments. A such envi-
ronment is a distributed architecture with a lot of changes
occurring asynchronously on the resources composing the
GRID. A change can be a disappearance or an appearance
of resources where a resource can be data storage or cpu
time but is not limited to this two. The programming of such
dynamic architectures does not fit well with API like MPI.
The loss of computing resources during the execution of an
MPI application is not supported this API until recent version
while it is a standard event in global computing environment.
Many projects study several approaches for creating MPI run-
time for global computing middleware[2][3][4]. This solution
is interesting for the end-user because it enables the reuse of
existing application directly on this new kind of architectures.

The global computing environments rest a lot on Internet
technologies. The common use of Internet follows the client-
server model. It is well adapted to the RPC programming
model which enforces the master-worker application organi-
zation. Most global computing environments define an RPC
like programming interface. The notion of web services is
an adaptation of the RPC model which standardizes the
interaction between communicating systems, the discovery of
distant services. The Globus Toolkit[5] is one of the most
complex GRID solutions. It promotes a services oriented
GRID architecture relying on web services technology for
discovery, interaction and exploitation of remote services.
Globus defines a set of building blocks needed in all GRID
middleware and let the authority using the GRID registers new
services dedicated to a particular community. The execution of
complex application requiring multiple services collaboration
is difficult to express. The first works in this direction by
two early projects, WebFlow[6] and Common Component
Architecture (CCA) have oriented the research activity toward
the workflow frameworks.

The workflow frameworks are a more and more attractive
topic in the domain of GRID middleware. The number of the
projects involved in the definition of a language for expressing
workflow on GRID leads to several models. The main models
used to define workflow are detailed in [7]. Each model has
interesting properties depending on the application domain.
Directed Acyclic Graph (DAG) are used in many projects
including DagMan[8], UNICORE[9] and GridAnt[10]. This
model is efficient to describe static workflow. DAG misses
constructions such as iteration or loop but the definition of
a workflow using DAG is straightforward. The model of the
YML workflow framework, proposed in this paper, is based
on directed general graph (DGG). However directed graph
express by YML can contain loops, iterations and branching.
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orkflow model includes systems build around Petri-
]. The workflow description in Petri-Net model is
t and also associated to a graphical modeling tools such
E.
YML framework and its workflow engine distinguishes
rom the other available solutions in several aspects.
with YML the applications are interoperable between

ware supported by the framework. Most workflow
ork do not integrate the component creation. YML

tes a component generator used to produce the binary
ents to be executed remotely. The end-user can imple-
mponents using standard languages such as C or C++.

ramework integrates with existing middleware thanks
ghly modular design. Using YML, users are able to
and validate applications even if he/she has no access
GRID. A back-end called process rest on the multi-
capability of modern operating system to simulate the
r of YML on a single computer.

III. YML FRAMEWORK

is a framework dedicated to the creation and the
on of parallel applications on grids and peer to peer
ware. YML rests on a dedicated programming language
d to help users to exploit large scale middleware.
orkflow language is named YvetteML . It enables the
tion of complex parallel applications independently of
cution platform. An application written in YvetteML
e can be executed on several middleware without

s. The language permits the description of the graph
application. The nodes of the graph correspond to
ation while edges correspond to dependencies or com-
tions. The graph once compiled in an internal represen-
s sent to a workflow engine specialized in executing
raphs. The YvetteML language allows a description
erent kind of components to be allocated to GRID
es. It integrates the ability to describe components on
hand and application graphs on the other hand. Both
are encapsulated in XML document for homogeneity.
L which is a graph description language provides
to specify the communication between components

the execution of the application. The graph can contain
and sequential sections and standard construction of
nguages including branching, exceptions and loops.

aph language explicites the dependencies between the
ents during the execution. Theses dependencies rests
otion of events. The YvetteML language is not a graph-
guage like YAWL[12][11], Triana[13] and Kepler[14].
re oriented-business workflow languages which rest on
workflow patterns. While YML describes the scientific
tion graphs which are regularly using three or more
ions which make them difficult to render and edit.
rest of the section describes the YvetteML workflow
e. The two aspects of the language are presented.
ph or coordination language is described just after the

ation of the component model. The section continues



with a presentation of the YML framework design and the role
of its components.

A. The YvetteML Language

The YvetteML workflow language consists in two major
aspects: a component model on the one hand and a graph
description language on the other hand. Both aspects interact
in order to create an application with strict separation of
the computation and the control or communication of the
application.

YvetteML rests on a light component model with the
requirements listed bellow. The component model must
hide the communication aspect and all stuff related to data
serialization and transmission. The components have to be
easy to specialize in order to benefit from the capabilities
specific to a middleware. The model used by YvetteML
makes use of stateless components. A component does not
store any state. It means several executions of a component
with the same parameters must produce the same result set1.
A component represents a chunk of computation requiring
no communication with the rest of the application. This
component model is similar to condor job definition used
in DagMan[15]. All components execution consists in three
steps: the data acquisition, the computation and finally the
data exportation. The components in YvetteML are described
using XML and are of three kinds :
Abstract component: An abstract component is a middleware
independent description of a computation. The abstract
component is used in the definition of graphs and during the
code generation step. An abstract component is similar to a
declaration in the C language. It defines the communication
channels with other components. Each channel corresponds
to a data in input or in output of the component and is typed.
Abstract components behave like an Interface Definition
Language (IDL). It defines the communication interface
between the component and the rest of the world.
Implementation component: An implementation component
specializes an abstract component and provides an
implementation for such component. There can be
several implementations for the same abstract component.
Implementation components are similar to the use of a
function defined in another language like Fortran in a C
program. Implementation components are only used during
the execution of an application. Computation is described
using a common language such as C/C++ but the software
needed for handling communication channel is generated for
each implementation components during their generation.
The component generation will be discussed in detail while
presenting the code generation process.
Graph component: It is a special kind of implementation
component. It encompasses a graph expressed in YvetteML
instead of a description of the computation. Such components
are middleware independent. It is allowed to define graphs

1This is only true if component implementations do not rely on random
number generator and similar functionality.
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as implementation for the same abstract component.
components are similar to function definitions in
language. The language itself does not make any
tion on the graph expansion mechanism. It’s up to
plementation of the scheduler and compiler to make
n on the way graph components are handled. The
implementation of YML does not yet support graph
ents but the language definition already integrates

omponents.

xample of component definition will be discussed in
V. The component model of YvetteML distinguishes it-
m other component-oriented workflow like AGWL[16]

L[17] by integrating the concrete component im-
tation in the model in order to provide component
or.
second aspect of YvetteML is the control of compo-
his aspect is not expressed using XML because of the

ty XML notation which is not user friendly. The control
s of the graph of the application and is described using a
ation language which is the input of a workflow engine
e of the execution of the application. The graph coordi-

language provides standard construction for expressing
lel application. The most important construction of the
e is the component call. A component call corresponds

execution of a component on the middleware. Graphs
teML do not depend on the underlying middleware.
n only make call to abstract components. The com-

step does not need any information related to the
entation or graph effectively used by the workflow
Listing below illustrates the YvetteML language. It

a reduction operation on a collection of objects. This
e illustrates most of the constructions of YvetteML .

es that two components exist. The first component is
create, it generates an object (a number, a string, etc).
ond component is the reduction operator and is named

on. Component creation is illustrated in section V. The
the reduction is to store the result in a data[1]. This
an then be used in the rest of the application. In order
truct the result we apply a binary operator reduction
ulating a tree. In a binary tree the children of a node
ndexed 2i and 2i + 1. The initial data are stored as
n of the tree and the second parallel section does the
on and the computation of all inner nodes of the tree.
r to synchronized the reduction operation we explicitly
nts manipulator wait and notify. Using two parallel

s, the reduction can start even if all the objects are not
ated. Finally, in the listing below comments start with

terminate at the end of the line.

s t d e f i n i t i o n s
C o u n t : = 1 6 ;
e : = o b j e c t C o u n t − 1 ;
i s a c o l l e c t i o n o f o b j e c t s

a t a i s a c o l l e c t i o n o f YML e v e n t s
f i r s t i t em i s i n d e x e d o b j e c t C o u n t .

i r s t p a r a l l e l s e c t i o n : C r e a t i o n



p a r ( i : = 1 ; o b j e c t C o u n t ) do
# c a l l c r e a t e component and
# s t o r e t h e r e s u l t i n d a t a
compute c r e a t e ( d a t a [ in tNode + i ] ) ;
# dependency e x p l i c i t management
n o t i f y ( e v t D a t a [ in tNode + i ] ) ;

enddo
/ / # Second p a r a l l e l s e c t i o n : R e d u c t i o n

p a r ( i : = 1 ; in tNode ) do
# w a i t f o r e x p l i c i t s y n c h r o n i z a t i o n
# i n o r d e r t o c r e a t e node i we need
# t o w a i t f o r nodes 2∗ i and 2∗ i +1
w a i t ( e v t D a t a [2∗ i ] and e v t D a t a [2∗ i + 1 ] ) ;
# compute t h e r e d u c t i o n
compute r e d u c t i o n ( d a t a [ i ] , d a t a [2∗ i ] ,

d a t a [2∗ i + 1 ] ) ;
# t e l l node i has been c r e a t e d .
n o t i f y ( e v t D a t a [ i ] ) ;

enddo
e n d p a r

B. YML design

The workflow approach is based on a program that manages
the execution of the computation involved in an application.
The YML framework is based onto this approach. It provides
the end-user with a set of tools to develop and execute
applications over large scale architectures. It defines an ab-
straction and hides the specificities of each middleware. The
user describes the computation of its application using the
component description aspect and uses a graph language to
describe the communication of its application. An application
developed using the YvetteML language should be ready-to-
use on multiple middleware. The YML framework strictly
separates middleware specific information from the application
description. The same compiled application can be executed
on multiple middleware. Graphs described by the YvetteML
language are fully expanded during the compilation process:
loops are unrolled, condition evaluated, unvisited branches
spread out of the graph and constants are propagated.

The YML framework is separated in two parts. The user
view is middleware independent and contains the main ser-
vices of the YML framework. These services consist in a
compiler for the YvetteML language, a just-in-time scheduler
and a development directory. The middleware independent
part is associated to a back-end for middleware dependent
services. Figure 1 describes the overall organization of the
YML framework. This figure highlights the different parts
of the YML framework and shows the middleware specific
services known as the back-end. The client positions itself as a
standard client for the YML framework. The test-bed platform
relies on the XtremWeb[18] middleware.

The list bellow describes the role of each element compos-
ing the YML framework:
Compiler: It translates applications described using the
YvetteML language to a set of components calls. Its component
call contains two kind of information. The precondition of the
execution is a boolean expression which determines whether
the component can be executed or not. The post condition
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Task Set

Program

Catalog

Backend

Middleware
Independent

Part

YvetteML

Abstract

Middleware

Middleware

Middleware

YvetteML

Development
Catalog

Execution

Specific

YML
Just−in−Time Scheduler

Tasks
Middleware

Part

Web Portal
(YML Client)

Compiler

Fig. 1. The YML framework organization

t of boolean flags used to describe the state of the
tion. The preconditions are evaluated based on the

ler: It manages application executions and acts as a
or underlying middleware accurately requiring comput-
ources. During the application execution the scheduler
task ready for execution solving dependencies at run-
ach scheduling iteration may or not generate a set of
tasks which are translated in computing requests to

ware through dedicated back-ends.
pment Catalogs: The YML framework stores compo-
n Catalogs. The Development Catalog stores informa-
ed only during the development stage. The middleware
dent part relies only on this catalog. The Development
stores components information and data type informa-

d to validate the YvetteML input program. This catalog
equired for executing an application.
epository: The YML framework implies a lot of
change through the network. The Data Repository

acts as a resource provider and delivers data to each
ents on demands. Note that the data repository does
ear in figure 1.
nd: All middleware specific services are encapsulated
ack-end. A back-end generally consists in a YML
which constitutes the component execution supporting

o be executed on remote peer and a client for the
ware itself. It is easy to add support for new middleware
L. Back-Ends can rely on several services provided
L such as the Data Repository client library and the
ent generator. YML comes with a default back-end
XtremWeb GRID middleware.



C. The Workflow engine

The just-in-time scheduler role consists in executing the
application on a middleware. The scheduler resolves depen-
dencies between components execution. It relies on the notion
of events. Each component execution composing an applica-
tion has a precondition and a post condition. The precondition
is a logical expression based on events. The default state
of all events composing an application is not notified. All
events constitute the state of a running application. Once an
event occurred its state is toggled to notify. Once notified
an event can not change its state again during the rest of
the execution. The post condition associated to a component
execution contains a list of events to be notified once the
execution is terminated. The graph exploration or application
execution relies on a table containing all events used to
describe the graph.

IV. MIDDLEWARE INTEGRATION

YML integrates supports for middleware through the use
of an adaptation layer. This layer hides the specificities of
middleware defining a set of features required by YML.
This adaptation layer is loaded at runtime into the different
program composing YML. Programs using the layer are the
component generator and the scheduler. All aspects specific to
a middleware are packed within what we called a back-end.
YML acts like a client of middleware services requiring no
modification to support YML.

YML requires only a few features common to all middle-
ware. YML expect from the middleware to be able to execute
a remote job. The most important requirement is that each job
transmitted to the middleware has to finish its execution. It
means that the middleware must to be able to run a component
even if some fault occurs. Some middleware do not provide
fault tolerance but the back-end for those middleware can
define a simple restart on failure fault tolerance mechanisms.

YML makes use of middleware to find and provide com-
putation resources for application execution. The current
approach used by existing back-end runs a YML worker
for each task composing the application. The worker is in
charge of interacting with YML servers to run the task.
The worker downloads the computation data from remote
data repositories as well as the binary application generated
using the component generator and runs it. The middleware
registers only the worker which hides all the interactions with
YML. This approach has been chosen in order to ease the
installation of YML components in the middleware. NetSolve
requires integration of components within each server during
the installation process. OmniRPC requires the components to
be generated locally on each remote host. Using one worker
for a whole middleware eases the integration process. It also
helps to provide a secured environment for both the application
execution and the remote host safety [8]. The worker approach
is not required by YML but it is used in its existing and
ongoing back-ends.

A back-end defines the interface between YML and the
middleware and consists mainly of the following operations:
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auncher acts as a client of the underlying middleware.
ares the computation and launches asynchronously the
on of a component.
etreiver monitors the execution of components on the

ware.
nent Generator is part of the back-end which
cated to the component generation. The generation
s in creating the source code of the component in one
language supported by the framework. This source
then compiled and translate to a binary application

or execution on the middleware.
ion Catalog is the catalog which stores the
tion related to the underlying middleware.

ack-end mostly consists in writing a client for the
middleware. The rest of the section presents two

back-end.

cess back-end

aim of this back-end is to provide the user with a way to
validate its application in a well known environment

s local computer. It rests on the capability of modern
ng system to run several process at the same time. This
r reflects perfectly the way YML works on standard

ware. Being able to test and validate her/his application
t any change is really interesting for end-users.

mWeb back-end

mWeb is a desktop grid middleware. The targeted
ks consist of several independent distant sites creating
e pool of resources. XtremWeb makes use of remote

dle time for executing job requests. The architecture
three roles: dispatcher, clients, workers. The dispatcher
s the whole system organization. It acts like an au-
ive entity for the whole platforms and ensures commu-

between workers and clients. All communication in
eb goes through the dispatcher but are always initi-

om workers and clients similarly to standard services
Internet. This policy is required to bypass security
isms such as firewall present on each site involved

middleware. The problems caused by the presence of
prevents any synchronous messaging between peers

en direct communication between peers. XtremWeb
clients, workers and dispatcher to leave the system
time. Fault management is one of the priority of
dleware. The system status is maintained even if the

her faults. In this case all workers and clients wait until
atcher is available again. In this middleware the client
control which peer runs a job.
re 2 details the various steps needed to run a job on

eb. We previously explained that all communications
ugh the scheduler and that XtremWeb does not allow
communication between workers and also between
s and clients. The execution of a job requires at least
. The client asks for the execution of a job (1). The
ispatcher stores the query and wait for a job request



from any available workers (2). The dispatcher transmits the
job information to the worker (3) which computes the results
and sends them back to the dispatcher (4). Asynchronously,
the client makes regular check for the job completion (5) until
the results are available on the dispatcher (6).

DispatcherClient Worker1 Worker2

Job request 

Task Request

Task Data

Task Request

Task Data

Task Result

Results available ? 

Results available ? 

Results available ? 

Results available ? 

Job results

Fig. 2. XtremWeb Middleware: Job execution

In the context of YML this architecture implies high latency
and no direct communication between peers involved in a
computation. Compared to a GRID middleware based on
the Globus Toolkit, the controls usable by clients are really
limited. The few mechanisms available were used to define
the minimum requirement of an YML back-end. However
this subset eases the definition of new back-ends. The com-
munication involved in the execution of a component has to
transit through a third party data repository which acts as a
communication channel between participants. The scheduler of
XtremWeb present in the dispatcher runs jobs using a FIFO
scheduling policy. The first submitted job is the first to be
executed. XtremWeb is historically the default backend for
YML which was motivated by providing workflow capabilities
on top of XtremWeb.

V. CASE STUDY

In order to illustrate the YvetteML language and the various
components of YML, this section develops an example based
on a numerical method and the integration within YML of
an object-oriented numerical libraries dedicated to the linear
algebra iterative methods.

A. Application

Numerical methods are classified in two categories: di-
rect methods on the one hand and iterative methods on the
other hand. An iterative method computes a succession of
approximations of the solution until the accuracy matches the
desired one. An iteration is composed of two steps: (a) the
computation of the solution of the current iteration and (b)
the creation of the initial data if another iteration is needed.
In direct methods instead, the number of operations required to
construct the solution depends only of the size of the problem.

The eigenvalue problem[19] consists in finding the eigen-
values λ and the eigenvectors x of a matrix A which are the
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s of:
Ax = λx (1)

lly, only a few eigenelements are demanding. When
with large sparse problems, the standard methods (QR)
ing the eigenproblems are not efficient enough. They

e coupled with a projection method which translates
n-size problem to a smaller one with a small matrix
m), solves the problem with this small matrix and

rms the results back in the initial space. The projection
s the problem from the initial space to a Krylov
e of base B(n × m) with similar eigenvalues. The

ion acts like a compression algorithm with data loss.
blem reduction makes it possible to solve it using stan-
ethods but with a lot of information loss. That means,
ral, the accuracy of the approximated solution is not
ired one. Most matrices requires numerous iterations
erge. Each iteration concludes with the appliance of a
ng strategy. The efficiency of an iterative method highly
s on the restarting strategy which constructs the initial

the next iteration. The layout of such methods for
the eigenproblem is :
reate the initial vector

terate until maximum number of iterations is reached:
a) Projection in the krylov subspace
b) Resolution in the subspace
c) if restarting go to (2.a) else go to (3)

ack results
st iteration begins with the creation of an arbitrary

initial vector. One can use columns from the identity
or any arbitrary chosen vector for the initial process.
eration will produce refinement of this initial vector
r to create the correct subspace with the expected
ements contained. This vector is transmitted to the
ion which creates the subspace and produces a matrix.

process is then applied to the newly created matrix in
find solutions in the subspace. The results obtained in

space are translated to the initial problem and checked
uracy. If the accuracy of the solution matches the
one the method is stopped and the eigenvalues and

ctors are packed for the user. Otherwise a restarting
is applied to the inaccuracy solution allowing to

ct a new initial vector for the next iteration.
explicitly restarted Arnoldi method (ERAM)[20] is an
e of such methods which uses an explicit restarting
. It means that the restarting strategy creates the next
data by using explicitly the eigenelements produced
the previous execution. The restarting strategy makes
combination of the computed eigenvectors in order to

a new initial vector. The multiply explicitly restarted
i method (MERAM) is an hybrid method made of
instances of ERAM, also called co-methods, using
initial parameter sets. The restarting strategy of an
composing a MERAM takes into account the results

ed by the other ERAM. Figure 3 presents an execution
ERAM with three ERAM processes. Each process



creates different subspaces and the time needed for finding
solution in a small subspace is smaller than the time needed for
a larger subspace. The creation of the subspaces is also quicker
when dealing with small subspaces. Each process is executed
asynchronously and exchanges its results with other processes
after each of its iterations. It takes into account results obtained
by other processes.

ERAM 1 ERAM 2 ERAM 3

T
em

ps / Iterations

Fig. 3. MERAM execution with three ERAM processes

B. LAKe integration

Linear Algebra Kernel (LAKe)[21] enables the definition
of iterative methods for solving linear algebra methods ap-
plied to sparse non-Hermitian matrices. LAKe is an object
oriented library which enables very good code re-use between
sequential and parallel application. The design of LAKe splits
the high level application code from the data representation
and distribution. The parallelism is obtained by changing the
type of data distribution handled by the program. The rest of
the application is unchanged. Those mechanisms are designed
around the concept of services which provides modularity in
the design of applications. The iterative methods in LAKe are
defined as a collection of services. However, LAKe design
does not allow the definition of iterative hybrid methods.
Indeed, the latter presents a supplementary level of parallelism
between the co-methods participating in the hybrid algorithm.
Consequently, the sequential and parallel code reuse of a co-
method at the same time becomes necessary.

The YvetteML language splits the description of an appli-
cation in components on the one hand and in a graph of
component calls on the other hand. The MERAM hybrid
method makes use of LAKe to define its implementation
components while the control flow of the method is defined
using the YvetteML workflow language. The graph of the
method is presented in figure 4. The MERAM method requires
the definition of five components. Component named I corre-
sponds to the creation of the initial vector for the projection
method. AR corresponds to the projection method based on
Arnoldi. S is used to solve the problem in the subspace which
consists in finding approximations of the eigenelements. Re is
a component used to do a reduction. It takes eigenelements
from two methods and outputs the best elements from each
methods. Using a binary reduction the Re components extract
the best restarting values from each ERAM process. Finally R
denotes the restarting strategy. The YvetteML implementation
component corresponding to the initial vector creation is

present
while t
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Re
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Fig. 4. MERAM Graph using YvetteML

ed bellow. XML is used for the YML related stuff
he implementation code is in C++. The communication
dled automatically by analyzing the definition of the

t component MeramStart.

onent name=” MeramStar t ” t y p e =” a b s t r a c t ”>
am t y p e =” M a t r i x ” mode=” o u t ” name=” v ” />
am t y p e =” i n t e g e r ” mode=” i n ” name=” n ” />
am t y p e =” i n t e g e r ” mode=” i n ” name=” i d ” />
ponent>

onent name=” M e r a m S t a r t i m p l ” t y p e =” impl ”
t r a c t =” MeramStar t ” >
o b a l s><! [CDATA[
d e <M a t r i x . hh> / / LAKe m a t r i x t y p e

g l o b a l s>
u r c e l a n g =”C++” l i b s =”LAKe”><! [CDATA[
a t e ( n , 1 ) ; / / D e f i ne a v e c t o r o f 0

1 ) = 1 . 0 f ; / / s e t t o 1 one v a l u e .

o u r c e>
ponent>

erview of the YvetteML graph language follows. It
the beginning of MERAM and the definition of the
mposing the ERAM process. In this partial graph we
show the reduction and the restarting of the method.
nstruction of the language displayed here includes the
iterations, component calls, sequential loops.

i d : = 1 ; n b P r o c e s s )
i d i s t h e eram p r o c e s s i d e n t i f i e r
pute MeramStar t ( I [ i d ] , n , i d ) ;
( i : = 1 ; m a x I t e r )

mpute MeramArnoldi (H[ i d ] , B[ i d ] ,
n , m[ i d ] , I [ i d ] , i d ) ;
mpute MeramSolver ( Val [ i n t N o d e s + i d ] ,
Vec [ i n t N o d e s + i d ] ,
Res [ i n t N o d e s + i d ] ,



H[ i d ] , B[ i d ] , n , m[ i d ] , r , t o l , i d ) ;
# R e d u c t i o n
# r e s t a r t

enddo
enddo

VI. CONCLUSION AND FUTURE WORKS

We presented YML, a workflow framwork for global com-
puting environment. YML is build upon a dedicated workflow
language called YvetteML and specially defined for the YML
environment. The language splits the description of an ap-
plication in two aspects; a component definition language on
the one hand and a graph description language used to link
components altogether in a complex workflow on the other
hand. YvetteML uses XML for the definition of components
but the workflow graph is not done using pure XML.

YML does not rely on a specific middleware. One of the
goals of its design is to abstract any middleware and to provide
all required tools to describe applications independently of the
underlaying run-time environment. It requires the definition of
a new workflow language based on a component model. This
model enforces the separation between middleware specific
information and generic information by using two catalogs.
The development catalog stores and publishes all informations
common to all middleware consisting mainly in abstract and
graph component descriptions. An execution catalog is asso-
ciated to all run-time environment and stores all component
implementations available in the run-time. The middleware
specific aspects are managed within back-ends. Each back-end
deals with one middleware hiding its specific programming
job scheduling mechanism to the end-user. Being independent
from any middleware forced us to define the smallest set of
requirement regarding the underlying platform services. By
using YML tools, the end-user is free to change the run-time
environment without changing its application.

Several aspects in YML need enhancement and experiments.
The YvetteML compiler fully expands the graph before execu-
tion. This can be interesting in order to validate and optimize
the graph. The use of the graph components is a path toward a
dynamic graph expansion that can appear at boundaries of sub
graph. It can also be used to distribute the workflow engine
and remove bottlenecks of the centralized architecture of the
workflow engine.

In workflow framework scheduling the application is a
critical aspect. YML uses a trivial scheduling policy not taking
into account the informations issued from the middleware.
While it is already possible to plug new scheduling policies
in the workflow engine an enriched scheduling infrastructure
must be defined in order to experiment on this critical topic.
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