
A multi-level scheduler for the Grid computing
YML framework

Sébastien Noël1, Olivier Delannoy3, Nahid Emad3, Pierre Manneback1, and
Serge Petiton2

1 Members of CoreGrid Institute on Resource Management and Scheduling
Faculté Polytechnique de Mons and CETIC, Mons, Belgium

{Pierre.Manneback,Sebastien.Noel}@fpms.ac.be
2 Member of CoreGrid Institute on Programming Model
INRIA-Futurs, LIFL, USTL, Villeneuve d’Ascq, France

Petiton@lifl.fr
3 PRiSM - Laboratoire d’informatique - UVSQ, Versailles, France

{Nahid.Emad,Olivier.Delannoy}@prism.uvsq.fr

Abstract. This paper presents the integration of a multi-level scheduler
in the YML architecture. It demonstrates the advantages of this archi-
tecture based on a component model and why it is well suited to develop
parallel applications for Grids. Then, the under development multi-level
scheduler for this framework will be presented. 1

Keywords: Grid Computing, YML, Scheduling, Resource Management, Work-
flow

1 Introduction

High Performance Computing emerged has a common need in a lot of current
applications. As a new way to solve such applications, Grid computing infras-
tructures have been developed to share a high number of heterogeneous resources
from different Virtual Organizations (VO) into a common network. Each clus-
ter in each VO has its own management system. For example, availability of
resources, access policies, Local Resource Manager (LRM), usage cost, etc. are
usually different from site to site. Common tools have to be provided to deal
with resource heterogeneity and to ease the interconnection between all of them.
Moreover, resource states are highly dynamic and volatile and increase the dif-
ficulty of managing a Grid infrastructure which is accessed by multiple users at
the same time.

The development of parallel applications requires a high knowledge of internal
mechanisms and generally needs a primary step of identifying parallelizable parts
of the application. This identification step leads to the creation of components

1 This research work is carried out under the FP6 Network Of Excellence CoreGRID
funded by the European Commission (Contract IST-2002-004265).



2 S.Noël et al

which are unitary tasks computed by one node of the Grid. An application is
divided into components initialized with different input parameters and launched
with respect to precedence constraints. Such worfklow applications which are
usually represented as a Direct Acyclic Graph need a high level of control in the
Grid infrastructure to deal with the complex set of constraints.

As we will see in section 2, YML provides tools to define complex workflow
applications independently of the underlying Grid infrastructure. Its definition
needs the use of a specialized workflow language called YvetteML. Section 3 will
present a functional model aiming at providing a multi-level scheduler in YML.
Finally, some conclusions and perspectives will be sketched.

2 YML framework

YML is a framework providing tools to parallelize applications which has been
developped at PRiSM laboratories in collaboration with Inria-Futurs/LIFL [3]. It
focuses on two major aspects: the development of parallel applications and their
execution in a Grid environment. YML makes this development independent of
the Grid middlewares used underneath and hides differences between them.

On the YML point of view, an application is divided into different computing
sections, each of them containing some tasks executed sequentially or concur-
rently. A task, called a component, is a piece of work that can be mapped to one
node in a parallel environment. It has some input and output parameters and
is generally reusable in different parts of the application as well as in different
applications. YML provides a special type of components, called graph compo-
nent, that consists in the description of subgraph. As we will see in 3.2, this kind
of components will be exploited for the distribution of the application.

YML divides the development of a parallel application in three major steps :

1. A definition of new components. This definition consists in an Abstract and
Implementation component description which are both presented in the next
section.

2. A description of the parallel application. This description is independent of
any underlying middleware and makes use of the components as functional
units. It specifies parallel and sequential parts of the application using the
YvetteML graph description language [5] and provides notifications to syn-
chronise the execution of dependent components. This description is directly
deduced from the graph representation of the application. More information
on YvetteML is provided in subsection 2.3.

3. The compilation of the application. This step analyses and transforms the
application graph into a list of parallel tasks with respect of the precedence
constraints.

The three steps above are all middleware independent and ensure that no Grid
relevant knowledge is needed to develop parallel applications.

After the compilation of the application, the execution can be started using
the Workflow Scheduler which will interact with the underlying middleware.



A multi-level scheduler for the Grid computing YML framework 3

This interaction, represented on figure 1, needs the use of a specialized backend
dedicated to the corresponding middleware. The execution of the application is

Fig. 1. YML Workflow Scheduler interaction with the middleware

directed by the Workflow Scheduler which will submit tasks to the middleware
through the dedicated backend. Each task is launched by a YML worker which
will contact the Data Repository Server to obtain component binary and input
parameters to start the computation.

2.1 YML advantages

The comparison of YML with other workflow compatible frameworks like Uni-
core[6] or DAGMan[1] for Condor[7] points on several advantages.

YML helps the developer in the whole process of parallelizing applications.
It starts at the early stage of components creation to the execution of hardly
constrained workflow applications on a Grid. Moreover, YML allows the test
and validation of those applications on the user computer using a special back-
end which relies on the multi threading capabilities of the underlying operating
system.

As we will see in next subsection, YML eases components creation. Existing
code can be reused by importing libraries as some new components without any
adaptation. Those components are called by the application when computational
tasks have to be started. Moreover, the notions of abstract and implementation
descriptions of components bring three interesting features for the Grid scheduler
that can be included in the framework:

– data migration can be easily quantified at the start and at the end of the
application thanks to the abstract definition;

– data used by a component is clearly defined in the abstract and implemen-
tation definitions; therefore this can be used in a checkpointing feature to
move a component from a node to an other;

– computation time of a component can be evaluated thanks to the implemen-
tation definition.



4 S.Noël et al

The use of Data Repository Servers hides the data migrations to the developer
and ensure that necessary data are always available to all components of the
application.

The next subsections will present an example usage of the YML framework
for the creation of a squared-matrix product application.

2.2 Component creation

A component has to be defined and registered in the YML catalog in order to
be used in a parallel application. This will be illustrated by a short example: a
matrix multiplication component. The component creation can be done in three
steps.

Definition of custom datatypes : new datatypes can be defined in new
classes or in existing libraries (YML compiler enables inclusion of libraries im-
proving reusability of code). Functions to serialize and deserialize data have to
be defined: the two prototypes and their corresponding definitions (which are
not represented here) are required for I/O operations made by the final compo-
nent. Primitive datatypes such as integer, real and strings are already provided
by the YML framework.

#ifndef MATRIX_HH
#define MATRIX_HH 1
#include <matrix.h>

typedef math::matrix<int> Matrix;

template <> bool param_import(Matrix& param, char* filename);
template <> bool param_export(const Matrix& param, char* filename);

#endif

This new datatype is called Matrix and makes use of the Matrix TCL Lite library
[2] which do not require any modification.

Abstract definition : this definition includes a name for the component, a
short description and a list of input and output parameters. This list specifies a
name and a type for each parameter.



A multi-level scheduler for the Grid computing YML framework 5

<?xml version="1.0" ?>
<yml-query login="userName" password="pass">
<component name="MatrixProduct" type="abstract"
description="Product of two matrices">

<param name="result" type="Matrix" mode="out"/>
<param name="mat1" type="Matrix" mode="in" />
<param name="mat2" type="Matrix" mode="in" />

</component>
</yml-query>

The abstract definition presented above is included in a XML request pro-
viding username and password for authentication purposes. The Matrix type of
the three parameters is a custom datatype and has been defined at the previous
step. The name of the three parameters matches the name of the variables in
the implementation part.

Implementation : based on an Abstract definition. The results data will be
automatically sent to the Data Repository Server and available for other compo-
nents. At now, this implementation is made using C/C++ but other program-
ming languages can be easily added into each backend.

<?xml version="1.0" ?>
<yml-query login="userName" password="pass">

<component name="MatrixProduct_Impl" type="impl"
abstract="MatrixProduct"
description="Product of two matrices">

<globals>
<![CDATA[

#include <matrix.h>

]]>
</globals>
<source lang="CXX">

<![CDATA[

result = mat1 * mat2;

]]>
</source>

</component>
</yml-query>

This short example demonstrates the easiness of component construction with
YML. After the creation of the needed components, YvetteML can be used to



6 S.Noël et al

describe the application. The creation of the application and YvetteML features
are presented in the next subsection.

2.3 Application creation with YvetteML

YvetteML provides different features to create applications. These features are
described by an illustrative example on figure 2, i.e. a parallel squared-matrix
product. This application makes use of:

– Component calls. They submit a new task to the Local Resource Manager
(LRM) providing the name of the component defined earlier and the different
input parameters (lines 15, 16, 27 and 35 of figure 2).

– Parallel sections. They can be used to explicitly define sections which will
be executed in parallel (lines 11, 20 and 29 of figure 2) or to execute a loop
in parallel with iterators (lines 12 and 21 of figure 2).

– Sequential loops. They consist in loops with iterators sequentially executed
(line 31 of figure 2).

– Conditional statements. They may be used to test the value of iterators.
– Event notifications. They are used to synchronize the different parts of the

execution when a precedence constraint has to be respected (lines 17, 18, 25
and 26 of figure 2). For instance on line 17, a new event called evtMatrixLoad
is defined with an index ([1][i][j]) equal to the one of the matrix that has
just been loaded by the MatrixLoad component. After that notification, the
corresponding wait call (on line 25) will stop blocking the execution of that
iteration in the parallel loop.

The application described in figure 2 is presented for illustrative purpose. It
makes use of three components: MatrixLoad (which loads part of a file into a
Matrix datatype), MatrixProduct (which is described in the previous subsection
and compute the product of two matrices) and MatrixComp (which composes
the result Matrix by aggregating all sub-matrices).

This section has presented the current state of YML. The next section will
explain the scheduling model we are implementing on YML to enable its use
with multiple middlewares.

3 A multi-level scheduling model in YML

YML is a research project and therefore, different major features are still missing,
e.g.:

– backends for more middlewares (XtremWeb[4] and OmniRPC[8] are cur-
rently supported);

– support for multi-middleware environment;
– service level agreement.

To provide these features, we propose a multi-level scheduling model we are
currently implementing in YML. This model has multiple objectives:



A multi-level scheduler for the Grid computing YML framework 7

1 <?xml version="1.0"?>

2 <yml-query login="userName" password="pass">

3
4 <application>

5 <source>

6 size := 4;

7 div := 2;

8 url1 := "http://www.prism.uvsq.fr/cni/yml/matrix1.csv";

9 url2 := "http://www.prism.uvsq.fr/cni/yml/matrix2.csv";

10
11 par

12 par (i:= 1; size/div) # i = index of the row

13 (j:= 1; size/div) # j = index of the column

14 do

15 compute MatrixLoad(mat[1][i][j],url1,size,div,i,j);

16 compute MatrixLoad(mat[2][i][j],url2,size,div,i,j);

17 notify(evtMatrixLoaded[1][i][j]);

18 notify(evtMatrixLoaded[2][i][j]);

19 enddo

20 //

21 par (i:= 1; size/div)

22 (j:= 1; size/div)

23 (k:= 1; size/div)

24 do

25 wait(evtMatrixLoaded[1][i][k]);

26 wait(evtMatrixLoaded[2][k][j]);

27 compute MatrixProduct(result[i][j][k],mat[1][i][k],mat[2][k][j]);

28 enddo

29 endpar

30
31 seq (i:= 1; size/div)

32 (j:= 1; size/div)

33 (k:= 1; size/div)

34 do

35 compute MatrixComp(final,i,j,size,div,result[i][j][k]);

36 enddo

37
38 </source>

39 </application>

40 </yml-query>

Fig. 2. Squared-Matrix Product Application using YvetteML



8 S.Noël et al

1. schedule a set of YML components with input data and precedence con-
straints issued from one or more users;

2. provide computing resources to these components in a multi-middleware
environment;

3. guarantee users in terms of completion time of the application;
4. dynamically reorganise the schedule if unexpected events occur.

The following subsections develop different aspects of the model and present a
case study.

3.1 Economic model

The context we focus on is characterized by the following points:

– the objective of the Grid is High Performance Computing;
– the applications are mostly compute-intensive rather than data-intensive;
– the resources are owned by different providers and part of different VOs;
– the number of resource providers is about tens to hundreds;
– the architecture is not centralized.

Each cluster:

– is composed of homogenous resources;
– has a single access point;
– has a previously negotiated policy to access one or more other sites;
– is managed by a LRM (which may be different from one cluster to another).

The model we propose is based on an economic approach of resources and de-
fines different entities which will interact in the Grid infrastructure. An entity
can be a resource provider or consumer or both. Consumers require resources
of the Grid which are owned by providers. When a provider receives a request
from a consumer, he will answer by proposing a set of suitable schedules and
associated cost for parts of the application regarding access policy of the con-
sumer and availability of local resources. He can possibly subcontract parts or
the whole application to other resource providers without mentioning anything
to the consumer.

This model can be used in different scenarios: either a cooperation or a com-
petition between sites in the Grid infrastructure. Moreover, a hierarchy with
different layers of scheduling instances, as presented in [11], can be built.

Technically, the main idea is to provide a YML server to each LRM. This
YML server has 3 main objectives:

– to communicate with other YML servers and therefore, connect the different
clusters in a common Grid;

– to interact with the underlying LRM using a specialized backend;
– to provide needed features missing in the LRM.

The following subsection presents a typical usage scenario in this economic
model.



A multi-level scheduler for the Grid computing YML framework 9

3.2 Scheduling scenario

A typical scheduling scenario is:

1. the user/consumer submits his application to the local YML server;
2. the YML server analyses the application and decides whether it can provide

needed resources or not;
3. it may forward the whole or parts of the request to other resource providers;
4. suitable schedules are sent back in return of each request;
5. the local YML server gathers the information and proposes differents bids

to the user/consumer.

Steps 2, 3 and 4 are executed consecutively each time a YML server receives
a scheduling request. The different parts of the above scenario are explained in
more details in the next subsections.

Submission of the application. As described in section 2, the user makes use
of YvetteML to describe a parallel application. Within the submission request,
the user provides a completion time for the whole application or for some parts
of it depending on the requirements. The local YML server handles the user
requests regarding his local access policy. When the policy forbids access or
the user has no autorization, the request fails and the computation is stopped.
Otherwize, the scheduling process goes on with the next step.

Analyzis of the application graph. Regarding the number and type of the
local resources in one side, the current resource reservations in the other side,
the YML server will attempt to find suitable schedules for the whole or parts of
the applications. In order, it will try to schedule :

– the whole application;
– parallel sections;
– graph components;
– tasks in the parallel sections.

If local resources are able to compute the whole application respecting the
user constraints, the scheduling process is either stopped, either forwarded to
other YML server in the Grid. In the first case, reservation is made on local
resources and the computation is started. In the other case or in the case lo-
cal infrastructure can not provide sufficient resources for the whole application,
scheduling continues with the next step.

Forwarding of the request. The local server can decide whether it forwards
the whole request or only parts of it (this decision can be made with regards
to the access policy). In the last case, the request is splitted into different sub-
requests and are sent to other sites. To forward a request in the Grid infrastruc-
ture, the local server will interact with other resource providers for which an
access policy has been negotiated.



10 S.Noël et al

Return of suitable schedules. Each server will aggregate the suitable local
schedules as well as schedules from other resource providers. Then, the answer
is sent to the author of the request.

3.3 Access policy

When an instance wants to join the Grid infrastructure (either to provide or to
use resources), he has to negotiate access policies with one or more other schedul-
ing instances. We propose an access policy divided in two sections regrouping
static and dynamic informations which can be used to get a highly customizable
contract between the two scheduling instances. The static information will be
used first to filter the list of resource providers without any interaction. Then,
the resulting list will be filtered again by querying each resource provider.

The non-exhaustive list of possible parameters that can be set in an access
policy is:

– time intervals;
– cost per node per time unit;
– constant/variable cost;
– application size;
– number of nodes;
– nodes description;
– number of providers;
– resource reservation;
– forwarding of the requests;
– failure compensation;
– access priority;
– etc.

Some or all of these parameters have to be fixed in order to define an access policy
which can therefore be used in the resource discovery process. As presented in [9],
this process is mainly composed of two filtering steps: an authorization filtering
and a minimal requirement filtering.

The application requirements are defined by the YML Compiler which ana-
lyzes the YvetteML code of the application provided by the user; this information
will be used for the minimal requirement filtering.

Figure 3 presents the reduction of the set of suitable resources which is done
in two parts. At first, a static filtering is applied to obtain a reduced list B. Then,
if this list B is not empty, requests are sent to the resource providers to obtain
dynamic information which will be used as a second filter to get a resource list
C. This filtering in two steps tries to reduce the amount of requests exchanged
between the scheduling instances.

Each resource provider in the list C will be queried for possible schedules of
the application. This process is illustrated in the next subsection.



A multi-level scheduler for the Grid computing YML framework 11

Fig. 3. Resource discovery process: static and dynamic filtering

3.4 Case study

To describe the scheduling model, we will focus on an example Grid which is
presented in figure 4: the Grid infrastructure contains 5 clusters from different
Virtual Organizations. An arrow from a server to an other means that the first

Fig. 4. Example of Grid infrastructure with different Virtual Organizations

has an access policy to contact the second. For instance, server YML 1 has two
resource providers which are servers 2 and 4; the rest of the Grid (servers 3, 5 and
6) is not visible to server 1. When a server receives a request, it can handle all the
request or ask other resource providers. An access policy is previously negotiated
and may be different for each client of a same site. Therefore, a direct request to
a server may be less interesting than passing by an intermediate. For instance,



12 S.Noël et al

in the figure, (c) policy could be more expensive than (a)+(b); in this case, the
client located in VO1 may ask resources to server 2 which will negotiate resources
with server 4 in VO3. The negotiation between 2 and 4 will not be visible to the
first client. As in the VO1, a YML server may have no local resources; therefore,
it acts only as a client and will contact other sites to get computational resources.

We present an example application which, as shown on figure 5 can be rep-
resented by a graph specifying dependances between tasks.

Fig. 5. Example of application graph

The start of the application is represented at the top of the figure and the
end at the bottom. Large dashed squares represent parallel sections of the ap-
plication, described by the user in the YvetteML code. Each task (which is
a component with input parameters) is represented by an oriented plain arc.
Notification arrows are used to synchronise tasks and introduce precedence con-
straints in the application. The example application presented in figure 5 has
two parallel sections; the first one consists in a preprocessing stage needed to
start the computation process in the second parallel section. For instance, the
preprocessing tasks can be an initialization of the data. The duration is 3 for a
preprocessing task and 10 for a computing task.

The scheduling process to map the application of figure 5 on the Grid pre-
sented in figure 4 will be simplified to enhance comprehension.

We suppose that:

– YML servers 3 and 4 are unavailable for the computation;
– 3 nodes of YML server 2 are unavailable;



A multi-level scheduler for the Grid computing YML framework 13

– dialog between YML servers 4, 5 and 6 will not be described;
– single task allocation will not be presented but is effective in our model;
– parameters of (c) access policy are such that no schedules will be proposed.

The response to each request is presented bellow from a YML server to
another. Symbols ① and ② refer to the parallel sections in figure 5.

1. Response from server 4 to server 1. The (c) access policy is such that no
schedules will be returned to YML server 1.

2. Response from server 4 to server 2.

application part starting time cost
① and ② [45,∞] (3*3+3*10)*2=78

① [3,17] 3*3*2=18
② [3,10] 3*10*2=60

The table presented above propose 3 differents sets of schedules. The whole
application can be coallocated on the resources of server 4 (or those of sub-
contractors which is not indicated to server 2) but this coallocation can not
start before time 45. This means that a lot of reservations have already been
made or that access policy can not provide enough resources before that
time. Other propositions consist in scheduling a parallel section (① or ②),
which can be started earlier (on time 3).
We suppose the usage cost per node per time unit equals 2 in access policy
(b2) (which is a static information). The cost for the different schedules can
be evaluated: 3 nodes multiplied by 3 time units multiplied by 2 for parallel
section ① and 3 nodes multiplied by 10 time units multiplied by 2 for parallel
section ②.
The YML server 2 will aggregate those bids with its local suitable schedules.

3. Response from server 2 to server 1.
application part starting time cost

① and ② [45,∞] (3*3+3*10)*(2+1)=117
① [1,4] 3*3*1=9
① [3,17] 3*3*(2+1)=27
② [3,10] 3*10*(2+1)=90

We suppose that the usage cost per node per time unit is not fixed in the
access policy and is therefore dynamic information. This means that server
2 is allowed to provide a different price at each request regarding local con-
siderations.
The coallocation of the whole application can only be done by server 4 (or
subcontractors): this is not indicated to server 1 which will see server 2 as
only resource provider. Server 2 will increase by 1 the usage cost of the
resources to take into account bandwidth usage to access server 4.
A new schedule for parallel section ① is proposed by server 2 which try to
enhance the use of local resources by applying an attractive cost of 1 per
node per time unit.
Those schedules are received by YML server 1 which will choose some of
them and start resource reservation by requesting server 2.



14 S.Noël et al

3.5 Features for the scheduling model

As presented in [10], a Grid scheduling architecture should provide different
major features. Those features are discussed in this subsection regarding the
economic model described in 3.1.

The resource discovery process is not a major feature in our context. Each
LRM is responsible for managing resource status and provide suitable schedules
regarding the resource availability.

In the same way, the status monitoring is not centralized and is only accessible
by the local YML server which will ask LRM to get needed information. This
information can be accessed differently according to the installed LRM.

The reservation of resources is not supported by all LRM and can therefore be
managed by the YML server if needed. In such a Grid, the resource administrator
has to ensure that YML is the only way of submitting tasks to the local resources.

The accounting and billing features will be managed at the YML level.

4 Conclusions and perspectives

In this paper, we have presented the YML Grid computing framework which can
be used to develop parallel applications and execute them in a Grid environment.
We have also described a multi-level scheduling model which can be used to
build cooperative or competitive Grids using a customized access policy between
scheduling instances of the Grid. This scheduling model is currently integrated
in the YML framework and will provide multi-middlewares capabilities.

Our aim is to improve this scheduling model by testing it in the YML frame-
work. This testing phase will bring new perspectives and will show needed adap-
tations of the current model.

References

1. Directed acyclic graph manager website. http://www.cs.wisc.edu/condor/dagman.
2. Techsoft - matrix TCL website. http://www.techsoftpl.com/matrix.
3. YML website. http://www.prism.uvsq.fr/cni/yml.
4. F. Capello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Neri, and O. Lody-

gensky. Computing on large scale distributed systems: Xtremweb architecture,
programming models, security, tests and convergence with grid. FGCS - Future
Generation Computer Science, 2004.

5. O. Delannoy, N. Emad, and S. Petiton. Workflow global computing with yml.
Technical report, 2006.

6. D. W. Erwin and D. F. Snelling. Unicore: A grid computing environment. Lecture
Notes in Computer Science, 2150:825–834, 2001.

7. S. Santhanam, P. Elango, A. Arpaci-Dusseau, and M. Livny. Deploying virtual
machines as sandboxes for the grid. In Second Workshop on Real, Large Distributed
Systems (WORLDS 2005), San Francisco, CA, December 2005.

8. M. Sato, M. Hirano, Y. Tanaka, and S. Sekiguchi. OmniRPC: A Grid RPC facility
for cluster and global computing in OpenMP. Lecture Notes in Computer Science,
2104:130–136, 2001.



A multi-level scheduler for the Grid computing YML framework 15

9. J. M. Schopf. Ten actions when grid scheduling. Grid Resource Management, pages
15–23, 2004.

10. U. Schwiegelshohn and R. Yahyapour. Attributes for communication between grid
scheduling instances. Grid Resource Management, pages 41–52, 2004.

11. N. Tonellotto, P. Wieder, and R. Yahyapour. A proposal for a generic grid schedul-
ing architecture. volume TR-0015 of CoreGRID Technical Report, November 2005.


