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Chapter 1

Introduction

1.1 Context and motivations

The simulation of real phenomena such as weather forecasting, natural disaster risks
reduction, civil and military engineering as well as nanotechnologies, often leads to the
solving of linear algebra problems. The size of these problems increases with the precision
of simulations. For such simulations, the use of modern numerical methods decreases the
convergence time of traditional solvers. They are well adapted to large scale distributed
memory systems.

Nowadays many of these problems cannot be solved in an acceptable amount of time
on workstation and desktop computers. A common way to improve performance is to
use parallelism and high performance computers. Using parallel applications on adapted
hardware can decrease signi�cantly the time needed to get the computed solutions. Scien-
ti�c applications can also require really huge internal and external storage capacity. Both
are limited on commodity hardware.

In order to increase the performance and to be able to solve larger size problems,
scientists jointly use several parallel systems with new numerical methods and new pro-
gramming techniques.

Thus, numerical libraries design and implementation have evolved toward parallel
versions. The �rst libraries available were dedicated to basic facilities or building blocks
for applications on a single processor. Those libraries still constitute the foundations
of higher level libraries used within sequential and parallel applications. Their design
methodology tends to use more and more modularity by introducing reusable software
components and object oriented conception.

Nowadays high performance computers gather thousands of processors with hierar-
chical memory models. Large scale distributed systems are the generalized form of
distributed systems. Systems move toward heterogeneous, volatile, geographically dis-
tributed ones. The e�cient exploitation of such systems, the conception/adaptation of
appropriate methods, the programming paradigms as well as the performance prediction
are still challenging.

1



2 Chapter 1. Introduction

1.1.1 High performance computer systems evolution

Supercomputers were initially driven by a small number of speci�c processors. The evolu-
tion in the number of processors leads to two approaches. Vector based multi-processors
tend to use only a few high performance processors. This approach is balanced by mas-
sively parallel systems which rely on a high number of micro-processors to achieve per-
formance.

Parallel architectures can be classi�ed depending on the memory layout. There are
two classical layouts. Shared memory architectures provide one memory area common
to all processing units while distributed memory ones associate local memory to each
processor. Based on these two approaches, several mixed solutions have been used in high
performance computers. On top of these memory layouts, two main parallel programming
models have been used: shared address space and message passing. Each of them can be
mapped onto most parallel systems.

The shared memory layout is limited in scalability but programming parallel applica-
tions for such systems is a lot easier using OpenMP [138] like API multi-platform pro-
gramming tools. Distributed memory architectures can scale fairly well. Programming
for such environments is most of the time done using a message passing API such as PVM
[53] or MPI [75]. MPI has become a de facto standard for high performance computer
systems.

High performance computers were designed to have speci�c hardware with especially
designed networking solutions. The performance improvement of commodity processors
and their wide availability have limited the bene�ts of using dedicated ones mainly due
to their much higher costs. High performance computer systems tend to use commodity
hardware coupled with high performance networking solution such as Myrinet or In�ni-
Band. Such distributed architectures are known as clusters or network of workstations.
Clusters have been widely accepted and installed in many computing centers. Program-
ming applications for clusters is most of the time done using MPI. Many clusters include
shared memory mechanisms at the workstation level. This leads to hybrid programming
models with applications mixing OpenMP and MPI.

Clusters of clusters are a typical example of hierarchical memory layout. The time
needed to exchange information between two processors vary signi�cantly depending on
whether the two processors are located in the same cluster or in two di�erent clusters.
Each cluster is homogeneous and communication time between all processors of the same
cluster is about the same. Clusters are interconnected using special nodes called gate-
ways. Gateways are connected together to compose the cluster of clusters. This network
topology makes the programming of applications using MPI more di�cult. The applica-
tion distribution must take into account the network topology and assign special roles to
gateway nodes.

Numerical libraries were evolved conjointly with high performance computers, this
for their adaptation to new parallel and distributed systems. The evolution of libraries
mostly concerns the modularity and composition capabilities o�ered to the user.
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1.1.2 Numerical libraries evolution

Numerical applications have been and still continue to be developed and tuned to get
the best performance of the various available hardware. Processor vendors are providing
optimized numeric kernel libraries such as BLAS [113, 28] (Basic Linear Algebra Subpro-
grams) for their processors (Intel MKL [182], AMD ACML [181], etc). These libraries are
used as building blocks for most linear algebra applications. They are composed of a set
of independent routines. The services provided by these libraries are simple and consist of
operations between vectors and matrices. These libraries are written using C or Fortran.
Linear algebra solvers are based on these libraries.

LINPACK (Linear system solver PACKage) [190] and EISPACK (EIgen Solver PACK-
age) [185] were among the �rst available libraries to solve linear algebra problems. They
have been designed on top of BLAS using the same imperative approach. The two libraries
have been superseded by LAPACK (Linear Algebra PACKage) [15] which provides ser-
vices for both linear systems and eigenproblem solvers. ARPACK (ARnoldi PACKage)
[115] provides solvers for larger eigenproblems. It also includes optimization based on the
numerical properties of the used matrices.

Following the evolution of distributed memory architectures, parallel versions of these
libraries have been developed. Projects like ScaLAPACK (Scalable Linear Algebra Pack-
age) [163, 54], PLAPACK (Parallel Linear Algebra Package) [90] and P_ARPACK (Par-
allel Arnoldi Package) [125] have been implemented on top of MPI and other message
passing libraries. The approach used in these libraries consists in building the parallel
version by using distributed versions of the basic operations used in LAPACK such as the
BLAS. Nevertheless, these libraries allow neither data type abstraction nor code reuse
between the parallel and sequential versions of the applications. That means the sub-
routines of the solvers are not able to adapt their behaviors according to the data types.
Those subroutines must be de�ned once for use in sequential and once again for use in
parallel.

The component approach used in libraries such as PETSc (Portable, Extensible Toolkit
for Scienti�c Computation) [20, 21, 19] drastically increased the modularity, interoper-
ability and reusability of high level components within the libraries as well as in the user
applications. It increases the ease of use, code reuse, and maintainability of libraries. The
object oriented approach, the introduction of generic programming and the use of MPI
in LAKe (Linear Algebra Kernel) [135] allowed reusability in sequential and parallel ver-
sions of methods. Numerical methods are de�ned once as a sequential application and self
adapt to the data type used. The data type incorporates, or not, support for execution
in parallel environments. LAKe de�nes a solver framework which can directly be used in
applications. This approach is also proposed in SLEPc [94, 95, 96, 97].

LAKe goes further in that direction by allowing the code to be the same between the
sequential and parallel versions of a method. The method is implemented once and used
either in sequential or in parallel. This is made possible by a separation between the
computation and the data type representations. Data types are provided for use either in
a parallel context or in a sequential one. The maintainability of the library is simpli�ed
using this approach.

Extended LAKe [63] adds to LAKe support for asynchronous linear algebra solvers.
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Such solvers consist in using several numerical methods (also called co-methods) which
collaborate in order to speed up the convergence of a global method. This collaboration
is generally done by asynchronous communications between the co-methods. Often, co-
methods are di�erent instances of the same method. As a consequence, in the context
of heterogeneous computing, one can be led to use, for a given application, parallel and
sequential versions of a co-method at the same time.

However, the scalability of the reusability o�ered by Extended Lake is limited. This is
because of the limitation of MPI at the time of the design of Extended LAKe. Mapping
the application to the available processors is delicate in hierarchical network topology
present in large scale distributed systems. Moreover, in the context of these systems, the
use of libraries is di�cult. They lack high level interface to help non expert end-users to
exploit them e�ciently.

1.1.3 Toward large scale distributed systems

Lately, the size of high performance computers has increased a lot and thus their price
also has. The high performance computers are massively parallel. They are so expen-
sive that alternative solutions are intensively investigated not as a replacement but as a
complementary computing infrastructure. In the mean time, Internet speed increased a
lot. Home computers are connected to the Internet using xDSL technology. Peer to peer
�le sharing solutions such as Bittorent [142], Gnutella [145] and Freenet [39] demonstrate
the capability of Internet to e�ciently broadcast information to computers all across the
world. SETI@Home [12] and distributed.Net projects successfully aggregate computing
resources to solve scienti�c problems by using volunteer computers connected to Internet,
usually called peers. Those systems rely on inactivity periods of remote computers to ex-
ploit their resources. This approach has been generalized by projects such as XtremWeb
[33] and BOINC [13]. The latter do not �x the applications supported by the environment.
They are used to do embarrassingly parallel applications which decompose the amount of
work in independent work units. A centralized master or a �xed group of masters dispatch
independent work units to the workers in order to be executed on volunteered peers.

Based on this success, grid and peer to peer middleware have evolved and matured.
The main idea of the grid is to aggregate resources of any kind into a consistent system
reachable from anywhere. grid systems initial goal and direction were to use computing
resources in a way similar to the electric power grid where one can get power by just
plugging a device. Where the power comes from does not matter to the user. There is no
need to know who provides the computing resources nor where the resources are located.
Resources available in a grid are provided by institutions who agreed to share computing
devices according to a contract. The programming tools available on grid are variants
of message passing libraries, remote procedure call libraries and, more recently, work�ow
environments.

Peer to peer systems use hardware provided by volunteers. Peers connected to the
system are heterogeneous in hardware and software. They are insecure and highly volatile
and there is no trust between participants. Peer to peer systems classi�cation is based on
the way the management of the middleware is done. A centralized management area is
used in systems such as XtremWeb, BOINC and Bittorent. The managing peers in such
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systems are trusted and stable. The second type of peer to peer systems does not require
any management dedicated resources. In such systems all peers are or can have several
roles at the same time. Common roles include : client, server and manager. Projects
like JXTA [189] and Gnutella follow this model. The main programming model available
in peer to peer environments is RPC. The discovery of remote services often depends on
ads publication and search systems. A peer publishes its capabilities to a system of ads.
When a consumer wants a resource, it looks for corresponding ads in the ads look-up
service and contacts the remote peer.

1.1.4 Motivations

Compared to standard high performance computers, large scale distributed architectures
programming is di�cult due to several new constraints. Computing resources are volatile.
They can appear and disappear at any time during the execution of an application. Re-
sources are heterogeneous. They can have di�erent computing capacities and software
environments. Lastly, the networking capabilities can change signi�cantly from one re-
source to another.

Despite the increasing complexity of large scale distributed systems such as grid and
peer to peer, classical parallel programming models apply. Indeed the same paradigms
(data parallelism, message passing, remote invocation, virtual shared memory) are used
with the new constraints of the volatility and heterogeneity of resources. Middleware
tends to provide a virtual execution environment. It relies on several software layers to
simulate operations originally provided by the hardware in high performance computers.
This approach is appealing to the end user because it allows him to use its existing
application or its programming skills directly. This is especially true for standards like
MPI as discussed in [104] for the Globus Toolkit and in MPICH-CM [151] for peer to peer
systems.

Large scale distributed architectures still lack standardization. Environments are not
yet interoperable and applications developed for one middleware are most often di�cult
to adapt to other systems. The Global Grid Forum which evolved in the Open GRID
Forum [191] is working on de�ning standard for grid middleware. The standardization
process extends works made by the W3C [196] in the context of Internet and web services
technologies. One of the important standardization process in regards of the application
development is the GRID-RPC [188] speci�cation which is not �nished yet. Independence
of the application in regards of the underlying execution environment is especially impor-
tant due to the number of di�erent middleware deployed over the world. Being able to
use resources from several virtual organizations transparently is also appealing.

Even without widely accepted standards, large scale distributed systems all provide
a mechanism to request the execution of a work unit on a distant resource. This can be
assimilated to remote execution mechanism (RPC). This facility is enough for applications
relying on embarrassing parallelism. They are based on a collection of independent work
units to be scheduled on available resources. The scope of applications which can be made
in parallel by using this approach is limited. Many parallel applications have dependencies
among work units.

In order to enable a wider scope of applications, and to be interoperable between
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several middleware, we have to rely on RPC mechanisms. They allow remote execution
of independent work units. On top of RPC, we must be able to manage dependencies.
Doing this task manually for each application is fastiduous and impossible for non expert
end-users. The management of dependencies has to be automated and delegated to a
specialized tool which controls the execution of the application.

To cope with the increasing complexity of scienti�c applications which incorporate
more and more often several domains of research, the programming environments must
provide assistants to drive the creation process of applications and exploitation of their
results by users. Applications are more and more often composed of software issued from
multiple scienti�c communities. In order to create an application as a collection of domain
speci�c existing software, developers need to specify interface at the boundary of each
domain. The programming environment must provide a strategy to isolate application
domains and enforce the separation between the implementation and the interface of each
service.

The problems mentioned above can be addressed using a scienti�c work�ow. It is
composed of a set of tools to support creation and execution of e-Science applications.
The latter are de�ned as a set of work units which have to be executed in a particular
order to obtain the results. Work units are linked to each other using data migration
operations. A wortk�ow enactment software manages the ordering of work units and
data migration The user is solely responsible of de�ning work units and the pre-ordering
of them.

It is necessary and interesting to dispose of a work�ow environment which enables the
realization of an application for large scale distributed systems. This work�ow must also
integrate tools to assist during the pre-processing, the processing and the post-processing
of applications. The pre-processing consists in preparing the execution of the application
such as data decomposition, pre-conditioning, data source selection, etc. The processing
corresponds to the execution of the application and the integration of services. The
post-processing includes everything related to the interpretation of the results and their
visualization. Such work�ow environment should allow users to follow the execution of
its application. End-users of this kind of systems could be interested in live collaboration
with other users around the world.

The main objective of this thesis is to bring a response to these issues by proposing a
scienti�c work�ow for large scale distributed systems. As we will see in the next section
our work�ow is based onto an as general as possible architecture model and covers a wide
spectrum of the process of programming, execution and visualization of the results of
complex applications.

1.2 A work�ow for large scale distributed system: YML

In order to answer our requirements described in the previous section, we have designed
and realized a work�ow, named YML. We propose a solution which can be adapted to
several middleware as well as many application domains and software environments. We
adopted a component oriented approach. A component is constituted of a public inter-
face and an implementation which is hidden to the rest of the application. Components
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interact with each other using their public interface only. Using this approach compo-
nent implementation can be changed easily to adapt the model or its realization to new
contexts.

The bene�ts of a component oriented design are numerous. The component approach
enforces the de�nition of communication interface between entities. The model can also
be speci�ed at various levels of abstraction. Most high level components could also be
de�ned as a collection of components themselves. The advantages of a component oriented
design are even more signi�cant when we consider the realization. The implementation
of a component can be changed without consequence on the rest of the system. It allows
anyone to adapt YML to multiple middleware, to use external libraries in our work�ows,
to experiment multiple scheduling strategies and many other aspects of the work�ow.

1.2.1 Work�ow and architecture modeling

We �rst propose a modeling of a scienti�c work�ow as well as a modeling of targeted
architecture. We de�ne and implement then our wor�ow according to those models.

1.2.1.1 Work�ow model

We propose a work�ow model which consists in three main layers. The front-ends layer
manages interaction with end-users. The back-ends layer brings interoperability between
middleware. Lastly, the kernel layer is located in between and provides a set of modules
which support the execution of work�ow processes.

The front-ends layer contains end-users tools to interact with the work�ow. Those
tools ful�ll the needs of both work�ow process de�nition and their execution. They
consist in graphical user interface, web portals and command line tools.

At the opposite direction of the end-users lies middleware. The back-ends layer sits on
top of middleware and is responsible of the interaction with them. The main goal of this
layer is to ensure interoperability of scienti�c work�ow processes in regards of middleware.
That permits the same process to be executed indi�erently on various middleware.

On top of the back-ends layer, the kernel layer provides a collection of services used
all along the lifetime of a work�ow process. It also provides mechanisms to incorporate
external services within processes. Examples of external services are libraries, databases
access, etc. The kernel layer is thus divided in two aspects: external services on the
one hand and work�ow process management on the other hand. This last integrates the
process de�nition language, and modules enabling compilation and scheduling of work�ow
processes.

The organization of our work�ow model is described in �gure 1.1.

1.2.1.2 Architecture model

The numerous existing global computing middleware di�er in several aspects. However,
it is possible to de�ne a model to which almost any middleware can be mapped. This
model, the one we based our solution on, de�nes the concept of peers. Peers correspond
to all participants in the system. They provide resources of two kinds: processor time and
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Figure 1.1: Work�ow model overview

data storage. Our model also de�nes the behavior of peers relative to the communications
and the faults.

Communications: The model assumes that direct communication between peers is not
possible. Indeed, Internet is a network of networks. Each network can apply its own
security policy which relies a lot on the principle of isolation using �rewalls. The aim of a
�rewall is to protect a set of computers of the same administrative group from outside, for
example a corporation. Firewalls allow outgoing communication and prevent incoming
connexion requests. For a distributed system they introduce a lot of complexities.

In order to bypass �rewalls and permit distant peer groups to participate in the same
system, a solution consists in making use of a third party peer that can communicate with
all distant sites and acts like a proxy or a mediator between the di�erent groups. Con-
sequently, our constraints assumption on not availability of direct communication could
be raised for some peers. Indeed, it is possible to de�ne a set of peers accessible from
all peers participating in the system. Those peers are used to exchange data between
distant peers. They provide virtual communication channels. We assume that indirect
communication is always possible. The peers providing virtual communication channels
are named data warehouses. This is because data warehouses are regular peers accessible
from any other peer involved in the system. A peer expecting data will ask the data
warehouse for a resource and waits for the other peer to store this data in it.

Faults: In large scale distributed architectures, fault tolerance policy is a critical aspect.
Ideally, the model should deal with faults by allowing any peer to fault at anytime.
However, in our model, peers are organized in two groups depending on whether they



1.2. A work�ow for large scale distributed system: YML 9

are allowed to fault (unstable) or not (stable). Stable peers are dedicated to the system
management and they are not allowed to fault. Unstable peers are used for computing and
allow faults at anytime. The model assumes that the work�ow framework itself as well as
data warehouses are assigned to stable peers during the execution of an application.

Figures 1.2 presents an overview of the architecture model. The solid arrows cor-
respond to direct communications. Direct communication between two peers are often
blocked by �rewalls. Dashed arrows represent indirect communications.

Figure 1.2: Architecture model overview

1.2.2 YML work�ow realization

We have designed and implemented a scienti�c work�ow, named YML, according to the
models established in the last section. Consequently, YML is de�ned as a collection of
collaborating components. The implementation of YML has been done using C/C++ as
a primary language. It also relies on XML for most of its data �les.

In order to present YML realization, we �rst illustrate the interaction with users by
describing front-ends. We then discuss the interaction with middleware through back-
ends. Lastly, the YML kernel and the integration of external services will be presented.

1.2.2.1 Front-ends layer

The front-end layer provides the user with several complementary tools to work with YML.
According to our model, a front-end is a software allowing users to access YML kernel
components. We identify two categories of user for YML. The applications developers on
the one hand need tools to help in the creation of applications and the integration of third
party services as YML components. On the other hand, some users are only interested
in running applications, monitoring their execution and �nally analyze and visualize the
results obtained during and at the end of the execution of an application. Both categories
of users have distinct needs and goals. YML proposes two graphical user interfaces (GUI)
to support the two categories of users.
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The integrated development environment (IDE) proposed by YML helps at the creation
of an application. It is composed of a set of wizards. Wizards assist the user during the
creation of work�ow processes as well as the integration of services. The IDE would be
even more useful if extended with a visual editor to de�ne work�ow processes based for
example on UML diagrams [141, 69, 56].

The web portal is used once an application has been de�ned. YML application can be
integrated within a light web portal. The portal provides a platform which incorporates
all important steps of the exploitation of an application. It supports the operations
related to the pre-processing, the execution monitoring based on log analysis, the post-
processing and the visualization of results. The portal provides a common basis for all
applications allowing submission and monitoring. The monitoring is based on a set of
views or reports displaying statistics collected in the application logs. A set of views
already exists, collecting information such as peers contribution, application statistics,
application progress, and a few others. Visualization of results is supported through user
de�ned views. This web portal has been used to present YML and hybrid linear algebra
methods during the Super Computing(SC) conferences in 2005, 2006 and 2007.

The IDE and web portal rely on a set of command line tools. They support indi-
vidual operations such as service generation and registration, work�ow compilation and
scheduling. The command line tools are based upon components de�ned in the kernel
layer.

1.2.2.2 Back-ends layer

In accordance with our model, a back-end is the interface between work�ow and middle-
ware. A back-end is a component which grants access to middleware services such as the
submission of work units and gathering of information about available peers.

The back-end manager aggregates several back-ends. It enables an application to be
executed jointly on several middleware. This component can also be shared between
applications. The back-end manager is still in an early state of research and needs fur-
ther investigations. However it opens research topics including quality of services, load
balancing and allocation based on sub-work�ow de�nitions.

Back-ends are most often used during the execution of work�ow on large scale dis-
tributed systems. They can also be considered as tools to assist users during the con-
ception and development of applications. YML provides dedicated back-ends to assist
developers to create work�ow processes. They simulate work�ow executions using de-
graded execution on a single peer, allowing the output of metrics, etc.

In its current version, YML supports two middleware: XtremWeb and OmniRPC.
The back-ends layer in general and particularly that of OmniRPC are realized in collab-
oration with Laurent Choy1. The corresponding back-ends allow the execution of YML
applications on a global peer to peer computing system and a grid environment. YML
also provides two back-ends to assist the user during the creation of applications. Other
back-ends are currently being added by researchers. Toussaint Guglielmi, from the uni-
versity of Lille(France) contributes to create a back-end for Condor. Pierre Mannenbach

1INRIA Grand Large/LIFL, University of Lille
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and Sebastien Noel from PolyTech Mons (Belgium) are currently providing a back-end for
the Distributed Resource Management Application API (DRMAA) [162]. This back-end
allows YML to be executed on top of middleware such as Sun Grid Engine [195], Condor
[116], PBS/Torque, GridWay [100], EGEE [25, 175] and UNICORE [65].

1.2.2.3 Kernel layer

According to our model, the kernel layer interacts with all other layers of YML. Com-
ponents of this kernel are oriented toward work�ow management. They make use of
components de�ned in the back-ends and services integration layers. This last is dis-
cussed in the next subsection. This kernel provides a compiler and scheduler components
for work�ow processes.

As we have shown on �gure 1.1, the kernel layer de�nes a work�ow description lan-
guage. This language associates standard control �ow patterns of imperative program-
ming language with mechanisms to support asynchronous execution and synchronizations
of concurrent control �ows or threads.

The compiler component translates the work�ow process de�nition into an oriented
graph. Each node of the graph corresponds to the execution of a service on a peer.
Edges represent dependencies between two service executions. Each node of the graph
is translated into a rule composed of a pre-condition, a service invocation and a post-
condition. The compiled work�ow process is interoperable between several middleware.

The scheduler component is responsible for the execution of an application. The
enactment of a work�ow process consists in coordinating or orchestrating the execution
of asynchronous services. The scheduler also controls data migrations. It depends on
an expert system which manages all rules generated during the compilation of a process.
Each time a service execution �nished successfully, its post-condition is applied to the
expert system. This activates new rules and the submission of new remote computations.

1.2.2.4 Services integration

The last layer of YML deals with the integration of external services. In YML, a service
denotes a computation (or a database access, etc.) on a remote peer. An application
is composed of a set of services collaborating with each other to produce a work�ow
process. Like any other aspects of YML, its services are represented by components.
They are de�ned using XML documents.

In order to manipulate and discover services, YML de�nes two catalog components
which interact with the kernel layer. The integration of service also provides a services
generation component, a services registration component and the two catalogs mentioned
before.

YML supports three kinds of services: abstract, concrete and graph services. An
abstract service de�nes a public interface. This interface contains information such as the
number of parameters required to execute a service, their type and the communication
patterns.

Abstract service de�nition is used to generate a skeleton of a concrete service. The
latter needs to be completed by calls to third party libraries to produce a concrete service.
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Several concrete services can be generated from a single abstract service. YML provides
another family of services to realize a public interface. It is possible to use graph services.
They consist in sub-work�ows which can be instantiated to compose larger work�ows.

The services generation component is used to create skeletons for creating concrete
services. In the current version of YML, one can write concrete services using C/C++.
The component can be extended to support new programming languages.

The services registration component is used to store services in the catalogs mentioned
before. Abstract and graph services are stored in the development catalog while concrete
services are stored within the execution catalog. The two catalogs are independent from
each other and are used respectively by the compiler and scheduler components.

In order to illustrate the integration of services and to implement hybrid methods for
eigenproblems, we integrated the LAKe object oriented library with YML. The component
oriented design of YML makes the easy integration of other libraries such as LAPACK
possible.

1.3 Validation and applications

To validate a programming environment such as YML , the following two questions have
to be answered.

1. Feasibility: Is it possible to de�ne and exploit e-Science applications in a reasonable
amount of time using the language, abstraction, tools provided by the environment?

2. What is the performance of the targeted applications de�ned using the programming
environment? In the context of YML, the performance must be evaluated for several
representative large scale distributed systems.

1.3.1 Feasibility

Despite the initial orientation of YML toward numerical applications, it does not contain
any domain speci�c constructions. The scope of applications which can be implemented
using YML is wide. In order to highlight families of applications well suited to YML, we
choose and show - in the next section - the e�cient exploitation of some representative
examples from three di�erent domains. These applications are from numerical simulations,
as well as sorting and image synthesis.

One of the initial goal of YML is the transparent use of middleware. By making
use of YML, the user does not need to know all the details related to the use of one
or several middleware. The maintenance of applications is simpli�ed as well as their
portability. Each time the middleware API evolves, all applications need to be updated.
The maintenance operation is required for all applications. However, if one uses YML,
only the back-end needs to be updated. The maintenance of applications related to the
middleware is signi�cantly reduced. Application are also de�ned once for all supported
middleware; the user does not have to maintain several versions of its applications if
he/she intents to use them over several middleware. Lastly, end-users can easily choose
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the best suited middleware for a particular application depending on constraints such as
performance, quality of services, budget and some others.

YML is based on a component oriented approach. This design introduces a lot of
modularity at several levels. New back-ends can be added to support new middleware.
New scheduling strategy components can be attached. This aspect is introduced in [134] in
the context of quality of services. The proposal of some components containing scheduling
strategies based on the de�nition of the parameters which impact on the execution time
of applications is currently worked on by Mohamed Jemni and Nabil Rejeb from the
university of Tunis(Tunisia). Services integration consists in adding new components to
YML which can be used during the conception and the execution of work�ow processes.
Scienti�c libraries, could hence easily be integrated as a collection of components.

1.3.2 Applications and performance evaluations

Performance evaluation of applications which use YML is di�cult due to the numerous
factors that might impact on the execution time. In order to present the performances,
we rely on several metrics and correlate them with the complexity of applications in term
of operation, space and communication. Performance evaluation of a system like YML -
which relies on maximizing usage of resources by techniques of cycle stealing - should not
be based solely on time. However, it is out of the scope of this dissertation to de�ne a
better performance evaluation strategy.

We evaluate the performance of YML through four applications from three domains.
The �rst one is a sorting algorithm which can be applied to arbitrarily large data sets.
The second application implements post-processing �ltering of images created using a
distributed ray-tracing application. The last two applications are related to linear algebra
methods.

The �rst application is a naive sorting algorithm de�ned to work on memory limited
peers. The application �rst generates a large collection of random numbers in chunks.
These chunks are then manipulated by a merging operation which takes into account at
most two chunks. We present our results on data sets composed of a millions of elements.

The second application presents the use of YML in the context of image synthesis. The
application generates a wall of images representing a 3 dimensional scene. A distributed
ray-tracer is used to create the wall of images as a collection of square windows. The
application then allows the execution of post-processing operations such as �ltering on
the resulting image. Examples of �lters include gaussian-blur and edges detection.

The last two applications are used in the solving of linear algebra problems. Linear
algebra methods and especially iterative methods for the solving of the Eigenproblem make
an intensive use of the matrix vector product. Examples of such methods include: PRR,
Arnoldi projection and the power methods. The matrix vector product is also used many
times during the product of two matrices. Other implementations of this applications,
are studied by Zaher Mahjoub and Olfa Hamdi from the University of Tunis El Manar.
They are evaluating the performance of the matrix-vector product with di�erent sparse
matrix storage schemes [61] on top of YML and XtremWeb-CH [2, 3].

The community studying linear algebra methods for Eigenproblems is more and more
interested in hybrid methods. These methods bene�t from heterogeneity. They also
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rely on asynchronous coupling of several co-methods which collaborate to decrease the
time needed to compute the solution. Thus they are good candidates for large scale
distributed systems. We implemented the multiply explicitly restarted Arnoldi method
[62] (MERAM) which uses as its co-methods several instances of ERAMs. We present
our results and validate them by showing that they are similar to the one obtained on
other meta computing systems such as Netsolve [16, 64]. Meanwhile, we present results
for larger problems.

1.4 Outline of the document

This thesis is organised as the following:

Chapter 2 presents the state of the art of high performance computing and large
scale distributed systems. We present the evolution of systems, models, and tools ori-
ented toward high performance computing. We point out how this evolution leads to the
large scale distributed systems and the emergence of work�ow in the context of e-Science
applications.

Chapters 3 to 6 concern the description of YML. Chapter 3 de�nes YML and gives
the outline of the presentation related to the modeling and realization of YML. Chapter
4 focuses on the front-ends layer of the framework and its interactions with end-users.
Chapter 5 presents one of the most important aspect of YML. It discusses all aspects
related to the interaction between YML and middleware. Chapter 6 discusses the kernel
layer and the integration of services. It �rst presents integration of external services
within YML and the coupling between YML and LAKe used to create lowly coupled
methods such as hybrid ones. It also depicts the work�ow management which consists in
the work�ow process de�nition language, and the compiler and scheduler associated to
that language.

Chapters 7 to 9 concern the validation of YML. Chapter 7 focuses on the study of
the feasibility, an a priori evaluation of YML. Chapter 8 de�nes the four representative
applications used during our experiments and proposes a study of their complexity in
terms of operations, space and communications. It also presents the work�ow processes
used for each application. Lastly, chapter 9 presents experimental results obtained on the
Grid'5000 testbed and a real platform composed of nodes located in Lille (France) and
Tsukuba (Japan).

Finally, chapter 10 presents our conclusions and perspectives of research.

1.5 Notations

Here is a list of notations used in the rest of the document.
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A A square matrix.
n The order of the matrix A.
nnz The number of non zero elements of a sparse Matrix A.
r The number of eigenelements expected.
λ An eigen value.
u An eigen vector.
m The size of the krylov subspace.
tol The accuracy of the solution computing by the iterative method.
Res The restarting strategy used in MERAM
Red The reduction strategy used to select the eigenelements used during the restarting
Init The initialization strategy used in MERAM

bs The size of block for data composed of collection of blocks
bc The number of blocks composing a set.
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Chapter 2

The state of the art

2.1 Introduction

A parallel computer is a collection of processing elements that communicate and cooperate
to solve large problems fast [8]. This de�nition can be applied to most nowadays comput-
ers, desktops with multiple cores or hyper threaded processors, workstations with several
processors, and high performance systems dedicated to scienti�c problems. The need
for computing resources increases jointly with the order of scienti�c problems. Results
obtained open new research areas which lead to more complex simulation models. The
more accurate the results become the more experiments and simulations are needed. The
amount of computation required increases faster than the computing capacities.

To support the demand of computation capacity, high performance systems evolve at
a fearsome speed. They will soon reach the capacity of executing a peta �oating point
operations per second. In a little more than ten years, high performance computers will
have multiplied their capacities a thousand times. This performance is possible thanks to
the evolution of processors, networks, operating systems and programming environments.

In order to study the evolution of parallel computers, it is not enough to focus on
the hardware. A high performance computer is always associated to multiple software
layers involved in the management of the global architecture. Figure 2.1 is a simple
representation of the main layers of a system which relates to application development
activities. In this chapter, we focus on a presentation of the evolution of the hardware,
parallel programming models and their realization for high performance computers.

In the mean time, the networking infrastructure supporting Internet evolved too in
order to support massive and numerous data transfers, multimedia applications, games
and more generally interactive contents. The number of computers connected to Internet
has increased signi�cantly too. The amount of potential resources connected to Internet
is large enough to justify research for a new kind of high performance systems based on
computers connected to each other using wide area networks(WAN). They are known
as meta-computing systems. Several approaches exist in order to aggregate computing
resources distributed in multiple locations. These approaches are known as grid, global
computing and peer to peer systems. In the mean time, Internet evolved in a set of
services which collaborate to provide more complex treatment to end users.

17
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Figure 2.1: General overview of a computer system

Recently, the evolution of processors took a new direction. Indeed, the increase of the
frequency is no more a possible solution to gain performance. However, the Moore law
[130], which speci�es that the number of transistors composing a processor doubles every
eighteen months, still applies. Processor architects introduced the concept of cores. A
processor is now composed of several cores following the MIMD model. Processors com-
posed of multiple cores are already available on high performance systems, workstations,
desktop computers and laptops.

The number of threads or control �ows which will be executed concurrently on next
generation high performance systems will be of a few millions. The issue related to the
handling of large scale distributed systems are the same in the context of meta computing
systems and future high performance systems. They will need to provide mechanism to
handle heterogeneity, fault tolerance, scheduling, etc.

In this chapter, we �rst present the evolution of high performance systems by means
of architecture changes, parallel programming models and tools to realize them. Section
3 is dedicated to large scale distributed systems and the evolution of the programming
environment for these systems. Lastly, the section 4 discusses solutions based on work�ow
and service orchestration which have taken a signi�cant role in scienti�c collaboration in
multi-domain science.
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2.2 High performance systems evolution

2.2.1 Classi�cation and evolution of hardware architectures

The content of this subsection is inspired by [168] and [42]. A computer is the realization
of an execution model. Execution models can be classi�ed according to the taxonomy of
Flynn [74]. This classi�cation is based on the way of manipulating instructions and data
streams and comprises four main architectural classes.

SISD machines : These are the conventional systems that contain one CPU and hence
can accommodate one instruction stream that is executed serially.

SIMD machines : Single Instruction Multiple Data systems often have a large number
of processing units, ranging from 1,024 to 16,384 that all may execute the same
instruction on di�erent data in lock-step. So, a single instruction manipulates many
data items in parallel. No such machines are being manufactured anymore. Nev-
ertheless, the concept is still interesting and it may be expected that this type of
system will come up again or at least as a co-processor in large, heterogeneous HPC
systems. Another subclass of the SIMD systems are the vectorprocessors. Vec-
torprocessors act on arrays of similar data rather than on single data items using
specially structured CPUs. So, vector processors execute on their data in an almost
parallel way but only when executing in vector mode.

MISD machines : Theoretically in Multiple Instruction Single Data machines multiple
instructions should act on a single stream of data. As yet no practical machine in
this class has been constructed nor are such systems easy to conceive.

MIMD machines : Multiple Instructions Multiple Data machines execute several in-
struction streams in parallel on di�erent data. MIMD systems may run many sub-
tasks in parallel in order to shorten the time-to-solution for the main task to be
executed. There is a large variety of MIMD systems and especially in this class the
Flynn taxonomy proves to be not fully adequate for the classi�cation of systems. A
wide variety of systems that behave very di�erently fall in this class.

In the remainder of this section we will mainly focus on MIMD machines. The Flynn
taxonomy is not enough to classify architecture for high performance systems. Almost
all nowadays systems fall in the MIMD class of machines. However, the classi�cation of
Flynn can be re�ned for MIMD systems based on the memory model used.

2.2.1.1 Shared memory systems

Shared memory systems have multiple CPUs all of which share the same address space.
This means that the knowledge of where data is stored is of no concern to the user as
there is only one memory accessed by all CPUs on an equal basis.

In shared memory systems, the communication between processors occurred through
memory accesses. The memory controler is often more complex than in other systems.
It is responsible for retrieving memory area accessed for reading and writing and to
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maintain the consistency of local caches. Shared memory systems used to depend on
a single memory area which was accessible from all processors of the systems. In this
kind of architecture, a bus or a network connects processors to memory. This approach
quickly showed its limit with regard to the number of processors which can be integrated.
Indeed, the number of processors is limited either by the number of concurrent access
or by the bandwidth. The scalability of high performance systems such as the IBM
SP series or the SGI Origine 2000, uses a di�erent approach to allow scalability. Non
uniform memory access (NUMA) architectures were introduced to bring more scalability
to systems providing shared memory. NUMA systems distribute the memory to each
processor. In such systems, the network of interconnexion is still used for all memory
operations (read/write). However, the round trip time to retrieve a memory area is not
�xed and varies depending on the distance between the two processors involved.

2.2.1.2 Distributed memory systems

In distributed memory systems each CPU has its own associated memory. The CPUs are
connected by some network and may exchange data between their respective memories
when required. In contrast to shared memory machines the user must be aware of the
location of the data in the local memories and will have to move or distribute these data
explicitly when needed. Distributed-memory MIMD systems exhibit a large variety in
the topology of their connecting network. The details of this topology are largely hidden
from the user which is quite helpful with respect to portability of applications.

The main di�erence between a NUMA shared and a distributed memory systems
lies in the integration with the network of interconnection. In shared memory systems,
the network interacts with the memory controller. In distributed systems, the network
of interconnection is connected to processors instead. This approach is often preferred
over the integration with the memory controller. Example of architectures which are
based on this memory model include the CRAY T3E, Fujistsu AP3000 and networks of
workstations.

The aspect which evolves the most in these kind of systems is the network of intercon-
nection. Many topology have been evaluated. This kind of architecture is really similar to
clusters where nodes are workstations built upon widely available processors and network-
ing solutions. A cluster is constituted by a collection of nodes connected to each other
by a network of interconnection. In clusters each node provides persistent storage, one
or several CPUs, local memory and runs its own operating system. In order to improve
performance, enhanced networking solution can be used instead of Ethernet (Myrinet,
In�niBand, etc).

2.2.1.3 Convergence and future systems

The convergence of high performance systems concerns CPUs, memory architecture as
well as future systems. Systems used to have speci�c processors designed for high per-
formance. The cost of such processor is so important that most systems now use regular
processors available on the market. Vector processors have almost disappeared from high
performance systems and have been replaced with scalar processors. High performance
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systems also converge on the aspect of the network of interconnection. Indeed, a large
number of the fastest computers in the world are based on a network of interconnection
which usez the same technology as Internet.

The distinction between shared and distributed memory architectures also tends to
disappear. Shared memory architectures are most of the time emulated on top of dis-
tributed memory systems[106, 57, 105, 22]. Moreover, the growing number of high per-
formance clusters which are typical distributed memory architectures tends to one class
of architecture. Other class are emulated by the runtime environment.

Future systems also converge. The number of processors of next generation architec-
ture is growing. The introduction of multiple cores in CPUs will speed up this tendency
and the number of concurrent threads executed on the next generation of systems will
be of the order of the million. In the mean time, systems tend to introduce extension
mechanisms to support coupling of dedicated processors into the system. Several projects
couple regular processors with FPGA, Cell or GPU. Systems are becoming heterogeneous.
Thus, programming models and environments will soon need to follow this evolution to
bene�t from asynchronous execution and heterogeneity.

In conclusion, high performance systems evolved toward a unique architecture model
based on distributed memory. Recent evolution tends to integrate more and more CPUs
which contain multiple cores. They also introduce mechanisms to couple regular CPUs
with dedicated ones. High performance systems are more and more modular. The basis
of the high performance systems is a network on top of which nodes are interconnected.
Nodes can be tuned to best �t the needs of applications. An example of such system
is RoadRunner[112] which integrates IBM Cell processors [154, 58]. The heterogeneity
and the introduction of specialized processor within the system is a way to increase the
e�ciency of architectures by means of power consumptions. Bleeding edge systems try to
increase the e�ciency in term of watt per �ops. By using specialized processor like GPU
or CELL the e�ciency can be improved for many classes of applications.

2.2.2 Parallel programming models

A parallel programming model must allow a programmer to express:

• Concurrency: several activities happen at the same time.

• Synchronization: the coordination of several activities.

• Distribution: data assignation to concurrent activities.

• Communications: data exchange between concurrent activities.

These four aspects characterize the parallelism used in an application. They are linked
to each other and constitute all together a parallel programming model. In this section
we present the two parallel programming models: the data parallel and the task parallel
model.
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2.2.2.1 Data parallelism

Data parallelism consists in de�ning a single control �ow which is common to multiple
data. In this model the programmer is only able to explicit the data distribution. Other
aspects of the parallelism are expressed implicitly. It corresponds to the SIMD execution
model. The same instructions are executed synchronously by all processing elements.
Data parallel languages allow the de�nition of a virtual topology of processing elements.
This topology is mapped on the read processing units available on the system. Processing
elements can communicate only with nearest neighbors. The underlying topology was
most often a two dimensional grid. This topology is well adapted to operations on reg-
ular data sets such as matrices and images. Connexion Machines, like the CM-5, were
especially design to support data parallel algorithms and applications. Vectorization is a
adaptation of the data parallel model. Nowadays vector instructions are available in most
general purpose processors.

A data parallel application �rst de�nes a virtual topology of processors such as a
2D grid. This topology is then mapped on real processors during the execution of the
program. The program de�nes a single �ow of execution which is executed by all virtual
processors concurrently. Instruction of the program consists in traditional instructions
and in communication operations with neighbors processors in the virtual topology. Many
linear algebra applications can be e�ciently implemented using this model [60]. A more
detailed description of concepts, tools and languages associated with this model can be
found in [140].

2.2.2.2 Task parallelism

Task parallelism consists in de�ning an application as a collection of control �ow units.
Control �ow units collaborate using either explicit or implicit communications/synchro-
nizations. In this model, each control �ow unit manages a private memory area. It
collaborates with other control �ow units to create the global action of the program.
Many realizations of this model exist. At the opposite of the data parallel model, the
task parallel model allows the programmer to explicitly control every aspects of the par-
allelism. She/he is responsible for explicitly managing the concurrency, synchronization,
distribution and the communications. Using the task parallelism model it is possible to
emulate data parallelism. This approach is named SPMD for Single Program Multiple
Data.

2.2.3 Parallel and distributed programming tools

In the remainder of this section we present some programming environments used on
high performance systems. Those tools allow applications to exploit one or both of the
parallelism introduced before.

2.2.3.1 Message passing tools

Parallel Virtual Machine [53, 194] (PVM) is a software system that enables a collection
of heterogeneous computers to be used as a coherent and �exible concurrent computa-
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tional resource. The individual computers may be interconnected by a variety of networks.
PVM runtime executes on each machine in a user-con�gurable pool. It exposes to the
application a uni�ed computational environment for concurrent applications. The user
de�nes programs using language C, C++ or Fortran which incorporate calls to the PVM
library routines for facilities such as process initiation, message emission and reception,
synchronization mechanism using barriers and rendezvous. The PVM system transpar-
ently handles message routing, data conversion required within an heterogeneous network
environment.

On top of the PVM package, the Heterogeneous Network Computing Environment
(HeNCE) [24] simpli�es the task of writing, compiling, running, debugging and analyzing
programs on a heterogenous network. HeNCE provides a graphical application editor
relying on the de�nition of the graph of the application. The HeNCE runtime manages
the execution of the application by solving dependencies between the nodes of the graph.
Message Passing Interface [75, 76] (MPI) is a standard that has been de�ned in the
�rst half of the 90's with the simple goal of de�ning a standard for writing message-passing
programs. This standard involved 60 peoples from numerous system manufacturers and
academics. The standard takes the form of an API speci�cation which provides a reliable
communication interface, similar to available systems such as PVM, Express [41, 109], Par-
macs [30]. The API provides point-to-point communication, collective operation, binding
for C and Fortran, and easy de�nition of SPMD applications. List of nodes involved in
the execution of an MPI application are assigned linear processor identi�er which are used
to identify sender and receiver in communication operations.

In order to support global communications, processors can be organized in groups of
processors called communicators. Communicators are used to specify subsets of processors
involved in global communication operations. A distinction is made between communica-
tion intra-communicator and extra-communicator.

The MPI standard as been widely accepted among the scienti�c community thanks to
its large availability on high performance computers and a predicable performance. Like
PVM, MPI relies on explicit communication between processors. The processors involved
in the execution of an application are organized in communicators or group of processes.
Each communication can be either point-to-point or collective with additional logic such
as reduction operation.

2.2.3.2 Tools for (distributed) shared memory

Tools to program shared memory architectures mainly rely on the notion of threads.
Threads usage can be made transparent to the user using dedicated language or extension
to traditional language. The most well known is probably OpenMP.
OpenMP
OpenMP [138, 137, 44] takes the form of pragma directives introduced in the application
source code. These pragmas allow the speci�cation of parallel section, data partitioning
and synchronization barriers. The execution of the program can be controled using envi-
ronment variables. OpenMP has been left aside by hardware vendors of high performance
computers due to the success of MPI (see 2.2.3.1). With the current limit reached by
processor designers, the clock frequency growth, multiple core processors have appeared
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and are now commonly available in most computers. These include desktop computers as
well as high performance computers. Shared memory systems are now almost everywhere
and standard compilers widely available added supports for OpenMP extensions to C and
Fortran.
Tuple-space model of Linda
Tuple-space provides the user with an associative shared memory. This model and its most
well known implementation Linda [51, 34] rests on the notion of tuple-space. The memory
of the application is composed of a set of tuples. A tuple consists in the association of a
memory area and a name. In order to manipulate a memory area, one needs to retrieve
its tuple. The notion of tuple allows the de�nition of additional semantics on memory
operation. Thanks to this additional level of semantic, it is possible to use a modi�ed
shared memory programming model more e�ciently over distributed memory hardware.

2.2.3.3 Tools for remote execution

Environments based on remote service execution are based on the client server communi-
cation pattern. A server provides a set of routines which can be used from local or distant
clients. Clients provide the input argument which are sent along with the service name to
the server. Most of the time, the service request (the name of service associated with the
input parameters) generates an answer which contains output parameters. Semantically
the execution of a remote service is similar to a function call. The only di�erence consists
in the code that must be generated at the location of the function call by the compiler.
Remote Procedure Calls RPC have been used widely in distributed systems. They
have been used to implement �le systems such as NFS or large scale distributed middle-
ware such as grid (discussed in section 2.3.2.2. The development of RPC applications can
be speed up a lot by the use of stub generators based on the de�nition of service interfaces
using interface de�nition languages (IDL). The SUN RPC is a widely used implementation
which provides tools to generate most of the code involved in the de�nition of the remote
services as well as the encapsulation of the operations needed to execute remote services
on the client side. The RPC approach is the foundation of all web oriented technologies.
Several projects have extended the model proposed by Sun RPC with emphasis either
on interoperability (DCE-RPC [144]), performance (DFN-RPC [143]), or fault tolerance
with (RPC-V [33]).

In the context of high performance computing, asynchronous RPC have been widely
used in master worker applications [152] and task farming environments. These applica-
tions and supporting infrastructures are detailed in section 2.3.2.2.
JAVA Remote Method Invocation The JAVA language de�nes a mechanism to access
remote objects which follow the remote execution model. In JAVA it is possible to execute
a function on an object executed by another process once it has been published in a
registry. The RMI registry binds object names to distant objects. The method invocation
on the client side is similar to the behavior of the standard RPC implementation. The
use of threads allows the execution of asynchronous requests. The overhead of RMI is
important as shown in [170]. Several projects provide alternate implementations of the
Sun RMI [121, 18] with enhanced performance.
CORBA [153] is a middleware which has been designed by the Object Management
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Group [183]. It provides access to remote object to applications. CORBA objects de�ne
a set of services described using an IDL. IDLs de�ne the list of features provided by
an object on the virtual network managed by CORBA. CORBA provides mechanism
to discover remote objects, explore the set of methods provided by a remote object and
invoke distant methods. Persistence, object creation, and many other services are available
for application developers. Many technologies have been designed based on a subset of
CORBA such as COM and DCOP.
Web services [196] is a speci�cation de�ned by the W3C. It is an intent to standardize
the communication between resources available on the Internet. Web services rely on
XML and on the HTTP protocol. Remote invocation is managed by technologies such
as XML-RPC[197] or SOAP which relies on an XML encryption of the request and the
results of the service invocation. The web services speci�cation is de�ned alongside a set
of others. They de�ne, for example, how to locate web services (discovery), learn the
interface of a web service (introspection or re�ection).

2.3 Toward large scale architectures

With the increasing number of processors and number of cores per processor, current high
performance computers tend to grow toward large scale architectures based on hundreds
of thousands cores. Clusters of clusters are used to solve applications which do not �t on a
single cluster. It is also common to reuse old clusters which have been replaced with more
powerful ones. The introduction of clusters of clusters also has an impact on the network
topology. Network topology is more and more hierarchical with each cluster isolated in
its own network and connected to other clusters through gateways.

In the mean time, meta computing systems based on heterogeneous computers con-
nected using WAN become more and more mature. Internet based computing solutions
incorporate millions of heterogeneous processing units in order to achieve numerous com-
putation jobs. These architectures do not intent to replace existing high performance
computers, they come in as a complementary solution. The development of Internet base
computing solutions has been made possible thanks to three evolutions:

1. Networking infrastructure evolved toward high availability, performance and e�-
ciency of world wide and local networks. In the mean time, the number of hosts
connected to the Internet is in excess of �ve hundred millions [40].

2. Network communication protocol and data exchange formats have been standard-
ized thanks to the use of XML base data format.

3. Finally, the high number of underused computing resources and data storage ca-
pabilities lead to the development of solutions to access and use these available
resources.

Meta-computing environments used in e-Science projects focus on providing mecha-
nisms to access heterogeneous resources remotely. A non exhaustive list of heterogeneous
resources includes CPU cycles, persistent storage, databases, software and experimenta-
tion devices such as telescopes, imaging devices as well as visualization tools. The goal
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of a meta computing environment is to allow any user connected to the system to access
and exploit any kind of resources available in the system.

Providing uniform access to many di�erent kinds of devices requires the resolution
of issues related to security, heterogeneity, fault tolerance and resources discovery. The
security is probably one of the main matter of meta computing environment. The meta-
computing environment creates a private community upon an open network of resources.
Resources involved in a meta-computing environment are shared between local users, if it
applies, and remote users. A taxonomy of meta-computing environment can rely on the
following criteria:

• Trust in users and computing resources: How far can other users of the system trust
a computing resources ?

• Layout of the management area: Is the system managed by a well identi�ed set of
servers ?

Based on those two criteria, the security mechanism that must be provided varies signi�-
cantly.

Build upon security mechanism, several software layers are added to the meta-computing
infrastructure in order to provide transparent access to remote resources and e�cient ex-
ploitation of computing devices. The progress made in the area of Web services and grid
services (OGSA) [84, 83] enabled the de�nition of a virtual organization or a grid as a
collection of collaborating services. Each computing device involved in the virtual orga-
nization provides a set of services (either static or dynamic) to other computing devices.
All mechanisms available to the end user of the infrastructure are made of a collection
of services. A small list of the main services composing meta computing environments is
presented below:

Authenti�cation services are responsible for the identi�cation of the user. Once signed
in, the user can access services available on the network. The authenti�cation
service can also be used by computing devices to retrieve credentials associated to
a particular user.

Information services are centralized or distributed services used to store and query
information about computing devices which are connected or have been connected
to the meta-computing environment. They provide information upon hardware,
operating systems, softwares available and network bandwidth.

Allocation services manage user requests for resources. They transmit a request to a
set of computing devices and reserve these devices for a dedicated amount of time
like batch schedulers do on high performance computers and clusters. This service
needs to cross information obtained by the authenti�cation services and information
services.

Communication services are used to create communication pipes between computing
devices connected to a meta-computing environment. These pipes are used when
two devices have to exchange information. It is similar to what is provided by
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TCP/IP for the Internet. Several protocols might be available depending of the
kind of communications. This layer builds a virtual network private to the meta-
computing system. It is used for all communications between peers.

Parallel API services allow the use of programming environments on top of the meta-
computing infrastructure. The meta-computing infrastructure de�nes a virtual ar-
chitecture. Programming environments provide a runtime environment to end-users
to exploit the virtual architecture. We will discuss in more details the programming
tools available later in this section.

Three families of meta-computing infrastructure exist: grid, global computing and peer
to peer environments. The next subsection provides a brief overview of these families and
try to highlight the di�erences between those architectures. A detailed taxonomy of these
systems can be found in [11].

2.3.1 Meta computing infrastructures

2.3.1.1 Grid computing environments

The grid systems re�ect the goal of the I-Way project [80]. It aims at demonstrating the
feasibility of connecting 17 institutions providing heterogeneous computing resources using
1Gbit/s dedicated network for high performance applications. Nowadays grid projects
are based on this work. The de�nition of the grid as been given in the book The grid
Blueprint for a new computing infrastructure [82] and re�ned in [77, 78]. An overview of
grid computing environments can be found in [85].

In grid environments peers are provided by identi�ed institutions which agreed to
share their capabilities with other participants of the virtual organization (VO). A peer
can provide access to resources such as CPU time, persistent storage, databases, appli-
cations, instruments, results computed by other applications, etc. The organization of
a grid middleware is presented in �gure 2.2. Grid middleware de�nes an overlay on top
of a network which is most often a WAN. In order to guarantee the security of the grid,
middleware often de�ned a virtual private network (VPN) which allows to bypass �re-
walls, and to isolate any communication of the grid from the public network by means of
encryption.

In a grid environment, all resources are administered by one or several institutions.
The level of trust which can be given to a resource is high. Indeed, resources are uniquely
identi�ed using certi�cates. Certi�cates assume the role of identity papers and are use
to track the activity of a resource or of users. Any abuse can be tracked using the user
certi�cate and thus, resources can be considered trusted. In a grid environment, grid
management services, users and resources are trusted.

Many grid are already deployed. Those grid are supported by a middleware. The
most representative examples of middleware are Legion [91, 92, 32], UNICORE [65, 43]
and the Globus Toolkit [79, 81].
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Figure 2.2: A grid infrastructure organization

2.3.1.2 Global computing environments

Web computing projects such as Jet [139], Charlotte [23], Javelin [38], Bayanihan [148],
SuperWeb [6], ParaWeb [29] and PopCorn [133] appeared with the JAVA language and
web applets. Volunteers connect their browser on the project page, an applet is loaded
which contacts the web server to retrieve tasks to be executed on the remote hosts. This
approach has multiple interesting properties. The host is protected by strong security
policies guaranteed by the applet mechanism of JAVA. Applets cannot access �les on the
volunteer peer, they cannot connect to distant servers except the one which provides the
applet and �nally the host is unchanged once the navigator leaves the web page embedding
the applet.

Those bene�ts are also the main constrains of the previous systems. They don't allow
the use of available storage resources, and the storage of intermediate computation. But
the main constrains of applet base solutions is the limiting policy regarding remote host
connections. Web servers are the limiting bottleneck of the above systems. Based on the
principle of these projects several meta-computing solutions have been proposed.

Global computing environment relies on a centralized set of servers which distribute
independent tasks to remote peers. Peers are heterogeneous hardware, mostly desktop
computers and workstations, provided by volunteers. Peers are used during their idle time
and the system relies on cycle stealing policies. This kind of environment is an extension
of Internet computing solutions which removes some of the limitations of system based
on Java applets. Figure 2.3 presents the organization of a global computing system.
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Figure 2.3: Global computing infrastructure organization

In Global computing environment, computing power is provided by volunteer peers.
Only a set of resources are managed by an identi�ed institution to provide the management
of the global computing environment. Peers on the other hand cannot be considered safe.
And thus can have malicious behavior. Currently used solutions to solve this kind of
issue include: redundant execution, and code instrumentation. The latter consists in
integrating into the results some hidden information which can be used to demonstrate
that the results have been obtained using the registered application.

The Seti@Home project [12] is probably the most famous project of this category.
XtremWeb [33] introduces support for multiple and user de�ned applications. It pro-
vides a set of servers which collaborate to dispatch work submitted by client and worker.
XtremWeb is detailed in 5.3.1.1. BOINC [13] is the evolution of the Seti@Home project.
Developed after XtremWeb, it supports several applications too. BOINC and Seti@Home
emphasize on volunteers rewarding [14]. Many e-Science projects based on Monte-Carlo
simulation now use BOINC.

2.3.1.3 Peer to peer environments

The last category of meta computing environment is peer to peer (P2P) systems. They are
a generalization of global computing environment where each peer can play several roles.
They can be at the same time client and server. They can also be involved in the man-
agement of the middleware itself. True peer to peer systems di�er from meta-computing
environments presented previously in regards of the management of the platform. In
P2P systems, the management of the architecture is contributed either by all peers or by
elected peers during the execution of the system. Each peer is at the same time producer,
consumer and administrator of resources. In these systems, not only the computation
peer (worker and client) can be malicious but also the management one. Representative
middleware for peer to peer environments are JXTA [189, 89], Peer-to-Peer Simpli�ed
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[176] and DGET[99, 59, 17].

2.3.2 Programming tools for meta computing systems

Meta-computing environments are typical distributed memory systems. They rely solely
on distributed computing architecture. The tools used to support this kind of systems
have to handle new constraints such as heterogeneity and fault-tolerance either explicitly
or implicitly. These systems are most of the time programmed using message passing
libraries, or remote invocations. A more detailed presentation of the programming mod-
els and tools available in grids can be found in [114]. The remainder of this subsection
describes several approaches used to program applications on large scale distributed sys-
tems.

2.3.2.1 Message passing

The MPI standard has been adapted to meta-computing environments. A globus version
of MPI called MPICH-G2 [104] is available. This version solves the problem of hetero-
geneity and allows to mix versions of MPI in a single application. However, it does not
provide any mechanism to manage faults. Fault-tolerant versions of MPI have been devel-
oped for meta-computing environments and large scale distributed systems in [146, 66].
Many specialized implementations of MPI solve some of the problems associated with
WAN and heterogeneous environments. The MagPIe library [107] implements MPI's col-
lective operations for wide area systems. PACX-MPI [87] enables collective operations
using TCP and SSL. Stampi [102] has support for MPI-IO and MPI-2 dynamic process
management. Lastly MPI_Connect [67] enables di�erent MPI applications, eventually
under di�erent vendor MPI implementations, to communicate. MPICH-CM [151] is an
adaptation MPICH which targets peer-to-peer systems.

OpenMPI [86] is a modern realization of MPI which sums the e�ort of various MPI
implementations to provide a new environment for grids and large scale architectures.
OpenMPI provides mechanisms to notify the user application that a fault happened on
a particular resource. The resource is then blacklisted for the rest of the execution. The
application is responsible for adapting its behavior to continue its execution.

2.3.2.2 Remote execution

RPC mechanisms are simpler than MPI. They are also more adapted to the service ori-
ented architecture of nowadays middleware. Almost all meta computing environments
provide their own mechanisms for remote invocation. Fault-tolerant versions of RPC li-
brary exist [52]. They hide the management of faults to applications. Remote invocation
mechanisms are most often used following the master/worker model to do task-farming
or to execute bag of tasks[36, 35].

Some tools provide more advance solutions built upon the remote invocation mech-
anism. They are known as problem solving environments[88, 98] (PSE). A PSE is a
computer system that provides all the computational facilities needed to solve a target
class of problems. These features include advanced solution methods, automatic and
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semi-automatic selection of solution methods, and ways to easily incorporate novel solu-
tion methods. Moreover, PSEs use the language of the target class of problems, so users
can run them without specialized knowledge of the underlying computer hardware or
software. By exploiting modern technologies such as interactive color graphics, powerful
processors, and networks of specialized services, PSEs can track extended problem solving
tasks and allow users to review them easily. Overall, they create a framework that is all
things to all people: they solve simple or complex problems, support rapid prototyping or
detailed analysis, and can be used in introductory education or at the frontiers of science.

NetSolve[16, 4, 1] is a client-server application that enables users to solve complex
scienti�c problems remotely by providing access to hardware and software computational
resources distributed across a network. NetSolve searches for resources on a network,
chooses the best one available, and using retry for fault-tolerance solves a problem, and
returns the answers to the user. Goals of the NetSolve project include ease-of-use, e�cient
use of resources, and the ability to integrate arbitrary software components as resources.
Interfaces to Fortran, C, Matlab, and Java enable users to access and use NetSolve more
easily. NetSolve can be used in a standalone environment or on top of Globus.

Other problem solving environments for grid include Ninf[150, 126] and DIET[10]
which is a CORBA based realization of NetSolve. The latter evolved in a richer environ-
ment which incorporates for example a work�ow enactment service.

2.3.2.3 Distributed Filtering

In data intensive application, which handle really huge amount of data, it is important
to be able to extract critical information from the mass of available information. This
extraction can be perform using a network of distributed �lters [103]. Filters are programs
that parse a data stream, analyze it and transform it into a more consistent form. Several
�lters can be chained to form a complex �ltering operation. The �lter model relies on the
de�nition of a set of �lter and the connection of this �lters one after the other. Several
�lter can be executed in parallel to work on di�erent data stream at the same time.

Data Cutter [26, 132, 111, 27] is a framework to manage the execution of �lter based
applications. This framework allows the de�nition of a topology of �ltering operations
connected by unidirectional streams. The topology de�nition is transmitted to a runtime
manager which maps the �lters and manage the communication between the many �lter
instances. Data Cutter is oriented toward really huge data �ltering and knowledge extrac-
tion. The framework provides advanced indexing services. These services are responsible
of extracting data from the storage system and send them into the �lter network.

2.4 Scienti�c work�ow

2.4.0.4 Work�ow orchestration

A work�ow is the description of a business process. It consists in a formal representation
of the steps involved in the achievement of a task. A work�ow is composed of a set
of activities. An activity represents a step in the realization of the task. Activities are
assigned to agents which can be either human or device. The work�ow describes the
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matching between agents and activities. It also de�nes how activities are related to each
other.

The concept of work�ow has been adapted to computer systems in two steps. First
the goal was to help managers to assign activities and control the evolution of the process
leading to the completion of a task. The second step was to use work�ow as a programming
model to orchestrate the execution of a distributed application relying on agent or server
available on the Internet. We are interested in the second category of work�ow tools.

The web is now composed of an increasing number of services which can be combined
in order to achieve a complex treatment. Typical examples of web services are Inter-
net portals such as iGoogle which incorporates themes that adapt themselves based on
weather forecasting or time services. This has been made possible thanks to the devel-
opment of standards such as Web Services, XML for data representation and HTTP for
communications. XML-RPC or Soap are used as a standard query mechanism for remote
services. They follow the RPC approach and the client/server model.

We have seen before that grid middleware introduced in the previous sections rely
heavily on the notion of services. Each role or mechanism in the system relies on a
combination of services to achieve any single operation. If this orchestration is manageable
for a simple operation it is di�cult to orchestrate manually the execution of a complex
scienti�c application requiring hundreds of service invocations. The complexity and the
decomposition of roles which are good as a software development practice is a nightmare
for application designers.

The adoption of work�ow systems to manage the execution of coordinated services
simplify the de�nition of complex applications based on services connected on the web.
The work�ow engine manages all operations required to execute the application :

• Selection of agents: the work�ow enactment service is responsible of de�ning a
mapping between agents and activities.

• Migration of the data between activities: the enactment service is responsible for
migrating data during the execution of the work�ow.

• Interaction with data sources: the enactment service is in charge of connecting data
sources such as SQL database to activities.

• Retrieval of results: the enactment service must gather results and store them so
that the user can retrieve them once the work�ow execution is terminated.

2.4.1 Work�ow for grid middleware

This subsection is strongly inspired by the taxonomy of work�ow management systems
for grid presented in [178].

2.4.1.1 Condor DAGMan

Condor [116, 155, 160] is a specialized resource management system (RMS). It relies on
a heterogeneous batch system which dispatches jobs to computing resources. Condor-G
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allows to use Condor on top of the Globus toolkit. Condor proposes the Directed Acyclic
Graph Manager (DAGMan) [184, 155]. It is a meta scheduler for Condor jobs. DAGMan
allows the expression of dependencies. Each job is a node of the graph and the edges
identify their dependencies. Each job can have any number of "parent" or "children"
nodes. Childrens are only executed once their parents have completed their execution.
DAGMan does not allow cycles in the graph to prevent dead-locks. Data migration are
not automated by DAGMan and must be explicitly de�ned by the user. The mapping of
the work�ow to the computing resource is done during the execution of the work�ow by
the condor job scheduler.

2.4.1.2 Pegasus in GridPhyN

GridPhyN [193] is a data grid dedicated to physics experiments. It is based on the Globus
toolkit. It de�nes Pegasus [45, 47, 46], a work�ow manager. Pegasus performs a mapping
from an abstract work�ow to a set of available resources, and generates an executable
work�ow. Work�ow are expressed using DAX (DAG XML description). Pegasus manages
the execution of the work�ow by means of datasets monitoring. The results of each activity
of a work�ow is a dataset. Pegasus progresses in the execution of the work�ow each time
a dataset is available. In order to map the abstract work�ow to the grid resources,
Pegasus makes use of several grid information services such as the replica location service,
the transformation catalog and the monitoring and discovery service. The mapping of
resources is assisted by articial intelligence techniques which generate a static planning
for the execution of the work�ow. Finally, the work�ow is transformed into a DAGMan
job.

2.4.1.3 Triana

Triana [157, 156, 158] is a visual work�ow-oriented data analysis environment. It relies
on GridLab Grid Application Toolkit interface (GAT) [7] which provides access to grid
services through JXTA[159], web services[122, 123] and OGSA. Triana work�ows are
composed of units. Units can be assembled using drag-and-drop in a visual editor. Units
are connected using logic units. Triana contains an integrated unit editor which allows at
the same time the de�nition of computation unit and logic unit. It is also possible to group
units together as a single unit for de�ning subwork�ows. The mapping of the work�ow to
the resources is done at the startup of the work�ow on the resources available. However,
if a resource disappears, Triana requests a new resource from GAT and continues the
execution.

2.4.1.4 ICENI

The Imperial College e-Science Network Infrastructure (ICENI) [128, 127] de�nes a component-
based Grid middleware. ICENI allows the de�nition of abstract work�ows which consist
in a collection of components. Each ICENI component is described in terms of meaning,
control �ow and implementation. Components are supposed concurrent and are linked
to each other through constraints mechanisms. This de�nition of the work�ow is con-
verted to a temporal view which consists in a graph where nodes represent computation
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and edge time dependencies. This model is similar to the one of Yet Another Work�ow
Language (YAWL) [164, 50, 165]. ICENI provides several scheduling strategies to map
the abstract work�ow onto grid resources. The scheduling strategy can make use of infor-
mation gathered during the previous execution of components gathered in a performance
service [127].

2.4.1.5 Taverna in myGrid

Taverna [136] is a work�ow management system used to support experiments in biology.
Taverna provides data models, enactor task extensions and graphical interfaces to control
FreeFluo [186] the enactment engine. Data models consist in inputs, outputs processors,
data �ow and control �ow. Through graphical interfaces, the user can control the mapping
of the work�ow to nodes of available resources or group of resources. Fault tolerance
mechanisms allow the user to set some level of tolerance on the data model composing
the work�ow. The data model can be tagged with some level of requirement. For example,
a critical data model that fails past several tries will abort the complete work�ow while
some other policy would allow to abort only a part of the work�ow.

2.4.1.6 GridAnt

GridAnt [172] is a work�ow system based on Ant[180]. It focuses on distributed process
management rather than on the aggregation of services which is the concern of most other
grid-enabled work�ow frameworks. Ant provides a dependency management mechanism
similar to Make and is thus limited to the execution of DAG. The language used to describe
the work�ow is based on XML and is similar to the description of a software built. Each
operation is associated to a tag. In order to be executed, an operation needs to wait for
the noti�cation of all the tags on which it depends. Tags are implicit in GridAnt. GridAnt
is part of the CoG toolkit[173] and is thus dedicated to Globus based grid middleware.

2.4.1.7 GridFlow

GridFlow [31, 93] is a grid work�ow management system which is based on agent-based
resource management. Rather than focusing on work�ow speci�cation and the communi-
cation protocol, GridFlow is more concerned about service level scheduling and work�ow
management. There are three layers of grid resource management within GridFlow: the
grid resource, the local grid and the global grid. A grid resource is simply just a particular
peer; local grid consists of multiple grid resources that belong to one organization; and
a global grid consists of all local grids. Global grid also provides a portal for composing
work�ows.

Work�ows are represented as a �ow of several di�erent activities, each activity repre-
senting a sub-work�ow. Each sub-work�ow is itself composed of �ows of tighly coupled
tasks to be executed on a local grid. The work�ow is managed by a hierarchical scheduling
system. In order to map a work�ow to a collection of resources, GridFlow �rst simulates
the execution of the work�ow in order to generate a near optimal mapping. The latter is
validated by the user before the real execution. The mapping strategy takes into account
data-gathering during previous work�ow executions.
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2.4.1.8 Askalon

Askalon [68, 177, 55] de�nes two separate composition systems: AGWL (abstract Grid
Work�ow Language) [70, 71] an XML based language, and Teuta [141, 69] that supports
the development of work�ows using UML activity diagrams. AGWL provides a rich set
of constructs to express sequence, parallelism, choice and iteration work�ow stucture.
In addition, programmers can specify high-level constraints and properties de�ned over
functional and non-functional parameters for tasks and their dependencies which are used
to optimize work�ow at runtime.

The mapping of resources on the grid is based on a new hybrid approach which mixes
static plani�cation and dynamic adaptation of the plani�cation depending on the status
of the grid resources. The static plani�cation depends on genetic algorithms. Askalon
maps resources to grid resources using a grid resource management service based upon the
Globus toolkit version 4. Like in GridFlow and ICENI, the plani�cation of the work�ow
takes into account the data gathered during previous work�ow executions.

2.4.1.9 Karajan

Karajan [171, 174] is derived from GridAnt and is part of CogKit. It extends the previous
solution with work�ow structures, scalability and error handling. It is easy to integrate in
several Grid middleware. It has been integrated with Globus, Condor, SSH, and some data
transfer techniques such as WebDAV and scp2. Karajan supports construction such as
sequence, choices, loops of work�ow structures. It relies on an XML work�ow description
language. A number of fault handling methods exists. Error handling allows users to
integrate strategies for errors and exceptions into the work�ow. Checkpointing enables
users to store intermediate states of the work�ow execution for later roll-backs when
problems occur.

2.4.1.10 Kepler

Kepler[119, 9] is one of the most popular work�ow systems. It is derived from the Ptolemy
II system [117]. Kepler relies on an actor oriented feature. Independent actors commu-
nicate through well de�ned interfaces. An actor is an encapsulation of parameterized
operations performed on input to produce output data. The execution model can be de-
�ned by users and is responsible for de�ning the order of execution of actors. This allows
to change the work�ow logic easily. Actors can be de�ned and deployed locally or can
be discovered through a web services harvester. Kepler also de�ned a set of actors for
interacting with grid middleware. It provides a visual editor to connect actors together.
Kepler enables at the same time control �ow and data �ow construction.

2The secured shell �le copy program provides a command similar to unix copy which allows to transfer
encrypted �les between two systems
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2.5 Conclusion

We presented brie�y the evolution of high performance computers and their program-
ming. We highlighted that hardware architectures tend toward distributed memory ar-
chitecture. Processors used in these systems are for most of them super scalar processors.
Each processor is composed of more and more cores which can be either homogeneous
or heterogeneous. The number of CPUs keeps increasing and is now of the order of a
few thousands on the fastest high performance computers of the TOP 500. Those CPUs
are connected to each other through a hierarchical interconnection network. Recently,
dedicated processing units also called accelerators have been added to high performance
systems to enable multiple programming paradigm and increase the e�ciency of those
systems. Examples of such processors are IBM CELLs and Graphic Processing Units
(GPU). Accelerators are interesting because of the gain of e�ciency by means of FLOPs
per Watt. Indeed the power consumption of high performance systems is becoming a
problem for nowadays architectures.

The motivations behind the important amount of existing large scale distributed sys-
tems are di�erent. However, all achieve a common goal. They provide mechanisms to
access distant resources in order to support computations. Meta-computing environments
and especially grids are more and more present. The architecture of those systems is based
on services which interact using mechanims based on remote service invocations. Despite
a gain in maturity and a convergence in the organization of those systems, the APIs
available to develop client applications are still lacking of standards. However, the lack of
standards has a strong impact on the portability of applications built upon those systems.

We highlighted that high performance systems and meta-computing environments
are starting to face the same kind of issues. Both systems tend toward heterogeneous
processors. They will soon have millions of concurrent threads of executions. For this
kind of systems, programming tools and environment need to be adapted.

In order to help the design of applications for this kind of systems, we modeled and
implemented a scienti�c work�ow named YML which allows interoperability of applica-
tions between middleware. Interoperability is achieved at two levels. Applications can be
executed on several middleware without any modi�cation and application execution can
be spread across several middleware at the same time in order to enhance the coverage of
available resources. The next four chapters are dedicated to the presentation of YML.



Chapter 3

A work�ow for large scale distributed

system: YML

3.1 Introduction

YML is a scienti�c work�ow for large scale distributed systems. The aim of this chapter
and of the following three is to describe this work�ow environment. We modeled it using
a component oriented approach. This in order to achieve simplicity, interoperability,
modularity and integration.

At the beginning of YML, the intent was to provide a language to express more easily
parallel applications on a global computing environment. This to enlarge the scope of
applications which could be created for this kind of systems. The lack of standard API
for programming meta-computing environments leads us to a need of separation between
the representation of the application and the runtime environment. Indeed the evolution
of those systems is fast but still in an early stage. Only recently, solutions like DRMAA
appeared.

3.2 Work�ow overview

The notion of work�ow has been used for years in business management. A work�ow
is the description of a business process composed of activities which can be held either
sequentially or concurrently. In a computing work�ow, an activity can involve either a
computing device or a human interaction (for example the validation of an intermediate
result). In either case, an activity exposes an interface which always incorporates infor-
mation about its inputs and its outputs, and sometimes parameters. An activity de�nes
a collection of channels. Each channel represents a communication end-point used to
exchange data between activities. The work�ow process de�nes the order of activities. It
also de�nes how activities exchange data by connecting their channels to each others.

The growing complexity of corporate promotes the use of work�ow. Indeed, in order to
decrease the costs, subcontracting is more and more used. However, for large companies
which depend on many subcontractors, the coordination of projects is a di�cult task. It
involves the exchange of many documents between the various entities involved, validation
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of steps, step ordering, etc. This is a typical application of work�ows. More and more
companies start to use such tools to drive large projects and formalize intern and extern
communication. This kind of usage of work�ows is the �rst step toward the automatization
of business process assisted by computers. This approach leads to the development of
many work�ow environments such as JBoss.

More recently, work�ows have been used in the e-Science project to drive large ex-
periments. Work�ows were �rst introduced by the biology research community to drive
experiments on grid middleware. The aim of those work�ow environments is to allow non
computer scientists to describe the process of converting row data to exploitable results.
Since the introduction in the grid community of work�ow environments, the amount of
research held on that kind of technology is really important. The approach proposed
by most work�ows consists in allowing the coupling of existing software to constitute an
application.

3.2.1 Speci�city of YML

YML is not a tool designed solely for code coupling. It is a work�ow dedicated to the
creation of complete applications from the very beginning to the end. This includes the
creation of the work�ow as well as the integration of services. Our approach to work�ow
is slightly distinct from the traditional behavior. Indeed, most of them emphasize on
the harvesting of services. In YML, we do not have any harvesting mechanism. We
manage services by means of two catalogs which store services available. YML services
are designed to work solely within YML work�ow processes. Those services are created
in the context of YML applications.

YML expresses an application using a work�ow process de�nition language. This
language allows the de�nition of any directed graph while many work�ow environments
rely on DAG. Unlike most existing work�ows, the work�ow process de�nition language
is used to express the control �ow of a YML application. We deduce the data �ow.
This approach is similar to regular programming language. Many work�ows for grid
environments do the opposite: they express the data �ow, from which they deduce the
control �ow. Some work�ow environments like Kepler, provide both explicit data �ow
and control �ow. This behavior is adapted to grid middleware where resources are quite
stable. On peer to peer and global computing systems however, we most often are not able
to map the data �ow onto a collection of peers. A work�ow based solely on control �ow
enables the expression of asynchronism. Indeed, YML can express optional dependencies.
This can be used to loosely couple several sub-work�ows in order to make them collaborate
asynchronously.

This work�ow description and the graph it describes are not used directly. YML relies
on an expert system to drive the execution of the work�ow. An expert system, or a rule
engine, is a tool which is used to demonstrate a fact. A fact can be a boolean attribute
or a complex object. What is important for the expert system is the presence of the fact.
The expert system behaves like a blackboard of facts which can be extended by applying
transformation rules to it. A transformation rule is similar to the if/then construction of
most languages. The if condition is a boolean expression based on the presence of facts.
If the condition is true, the rule is executed which leads to two things: 1) the execution of
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side e�ects 2) the extension of the blackboard with new facts. YML converts all work�ow
processes into a collection of rules and facts.

YML provides an environment used in the conception of algorithms and their im-
plementation for large scale distributed systems generally speaking. This is achieved by
the notion of back-end. The latter assumes the same role as the operating system of a
computer. It is the bridge between user applications and the hardware. YML back-ends
are used to provide a normalized interface to middleware, the same way as standards like
POSIX provide a common API on UNIX systems. The support for multiple middleware
is - unlike most other work�ow environments - not limited to a few systems and especially
not limited to GRID environments. Indeed, most existing work�ow environments support
one or two middleware. The support for new middleware is not something exposed to
end-users of the system and the dependencies in term of services are often important.
YML, on the other hand, is designed to support multiple middleware from the early be-
ginning. YML exposes this aspect to end-users. The aim is to allow other people to easily
integrate YML within their middleware. In the mean time, this feature also allows reuse
of existing back-ends to enable the execution of work�ows, to make use of resources from
multiple middleware at the same time.

3.3 Work�ow model

A simpli�ed model has been introduced in 1.2.1. It describes the modeling of the architec-
ture as well as of the work�ow environment. The architecture model highlights the notion
of peers. Peers represent computing devices which agreed to be involved in a middleware.
In order to provide a model which can be easily implemented by any middleware, our
architecture model introduces as few constraints as possible. We based our model on
typical global computing environments. Among the large scale distributed architecture,
those are the ones which are o�ering the least capabilities to the end user. They are thus
well adapted to de�ne the minimum requierments for a model of architecture.

Our architecture model identi�es a subset of the peers called management peers which
are responsible for the management of the architecture. Management peers provide ser-
vices for other regular peers. Each peer must be able to communicate with any manage-
ment peer. However, two regular peers do not have to be able to communicate with each
other. Management peers are supposed to be available at least during the execution of a
work�ow process.

Figure 3.1 presents the complete model of work�ow we de�ned to answer our moti-
vations. It highlights all the components of the work�ow. The �gure shows the layered
approach used to compose the work�ow environment.

A middleware is a software layer which is used to manage a collection of peers which
agreed to collaborate in a large scale distributed system. In order to model the complete
environment we need to expose a few services which are provided by the middleware.
All middleware expose a feature which allows the submission of a task or a job to be
executed by a peer. This is achieved by a service called the resource scheduler. The
resource scheduler is responsible for matching job request to peer the most e�ciently.
The complexity of this service varies signi�cantly from one middleware to another. The
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Figure 3.1: Scienti�c work�ow modeling
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middleware coupled with the architecture constitutes a runtime environment.
If we compare middleware to a high performance computer, the middleware is similar

to the operating system. Its goal is simply to provide an API to access hardware. Mid-
dleware o�er a little more services than just the operating system. Most of them are also
not interoperable. In order to achieve interoperability between the work�ow environment
and several middleware, we propose a component oriented modeling of a work�ow sys-
tem. Our work�ow is modeled as a collection of interacting components. Components
are interacting with each other through a well de�ned public interface.

The interaction with middleware is isolated in the back-end layer. This layer provides
a uniform runtime environment to the kernel layer of YML. The layer is responsible for
the mapping between abstract work�ow (middleware independent) and concrete work�ow,
which is a mapping of the abstract work�ow to available peers. The back-end layer is
composed of three components: the back-end itself, the worker and the data repository.

The back-end component is responsible for the interaction with the resource sched-
uler service of the middleware. It translates the abstract work description composing a
work�ow into requests to the resource scheduler of a middleware. Each middleware has
its own back-end component. The back-end component acts as a client of the middle-
ware. The abstract work request which is processed by the back-end component leads
to the execution of a worker component on a peer selected by the middleware resource
scheduler. The worker component analyzes the work description and is responsible for its
execution. It means the acquisition of the concrete service used to do the computation
and the data required for the computation. Then, the worker executes the concrete service
corresponding to the work. And �nally, the worker publishes the result of the execution.

Each time a data transfer is required, the worker as well as the kernel layer interact
with the data repository component. This component is responsible for the acquisition as
well as the publishing of data in the work�ow environment. The model thus de�nes two
operations:

• put : this operation is used to publish data within a data repository or a network of
repositories. Publishing data is similar to a write operation on a memory area.

• get : this operation is used to acquire data stored in a data repository. Acquiring
data is similar to a read operation on a memory area.

Data is identi�ed by a name and corresponds to a collection of arbitrary bytes. It is
similar to the tuple space of linda. Indeed the data repository component can be used to
simulate associative shared memory. One data is managed by a single data repository at
a time.

Upon the back-end layer, the kernel layer is responsible for the management of work-
�ow processes. A work�ow process is composed of a collection of services which interact
with each other by exchanging data. The services are created and managed in the service
integration layer. Our work�ow model depends on two catalogs to store services which
can be used in a work�ow. In our model services are regular components. We decided
to name them services to highlight the di�erence between a component that is part of
a work�ow and a component de�ned in the work�ow model. Our model de�ned three
families of services:
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• Abstract services de�ne the public interface of the service. They are used to validate
the work�ow process. They describe how a service interacts with other services.
Abstract services are de�ned independently of the underlying middleware. They are
used solely during the development of an application and a work�ow environment.

• Graph services realize an abstract service. They are used to de�ne sub-work�ows
which can be used as regular services in the de�nition of the work�ow. They provide
a component which can be used during the execution of the work�ow. They contain
a work�ow de�ned using the work�ow process de�nition language provided. Those
services do not depend on the middleware used.

• Concrete services are another mechanism to realize an abstract service. They are
used during the execution of a work�ow process and are e�ectively used during the
execution of the work�ow on a middleware. They correspond to services acquired
and executed by the back-end layer worker component. They make use of a na-
tive language such as C/C++ to describe the computation e�ectively executed. A
concrete work�ow only contains execution of concrete services.

The interaction between the service integration layer and the other layers of YML
is managed by two catalogs. The development catalog stores all information which is
not speci�c to middleware. This information is mostly used during the development of
work�ow based applications. This catalog is used by the service generation component
as well as the compiler component of the kernel layer. Concrete services on the other
hand are stored within the execution catalog. This catalog contains all of the information
needed for the execution of a work�ow process. It includes a list of all concrete services
already registered as well as a a mapping with abstract services. The selection of the
concrete services to use is left until the time of the execution of the service. This in
order to select the best concrete services at the time of the execution. This selection
might contain criteria depending of the data size, complexity of the algorithm used, etc.
The execution catalog is mainly used to store information used during the execution of a
work�ow process by the scheduler.

Concrete services are generated based on two information: the abstract services imple-
mented and the computation in a traditional language. A component generator is used
to mix the two information in order to create a usable concrete service. The abstract
service behaves in a way similar to an IDL for the service generator component. Indeed,
the abstract service is analysed to create a concrete service skeleton �lled with the com-
putation described in a traditional language such as C/C++. The component generator
is then able to generate one or several binary applications used on peers. The component
generator is also responsible for the registration of concrete services into the execution
catalog.

The kernel layer contains two main components which aggregate catalogs, back-end
component and data repository component. They are a work�ow process compiler and
scheduler. A work�ow is described through a work�ow process de�nition language. This
language de�nes a process which can be represented by a generalized directed graph. This
graph is processed by a work�ow compiler and translated into a set of rules. Those rules
are used by an expert system to manage the execution of a work�ow process. The compiler
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generates those rules based on the information available in the development catalog. The
result of the compilation of a work�ow is a work�ow representation which is independent
of any middleware.

The work�ow scheduler component is responsible for executing work�ow processes.
The scheduler does two main operations. It �rst schedules the execution of the work�ow by
solving the dependencies among its activities. The state of the application is represented
by events. An event has only two states: It either happens or it does not happen yet.
Events are injected into the expert system as facts. Rules represent computation on the
middleware. Once a fact or a boolean combinaison of fact is validated, the corresponding
rule is applied to the systems. This leads to the submission of a work to the back-end
in the �rst place. It also leads to the introduction of new events in the system. The
processus loops until the stop event is generated or all activities of the work�ow have
been processed.

Finally the front-end layer is responsible for the interaction between end-users and the
work�ow environment. It exposes several tools to interact with the work�ow environment
either to create new work�ows or to execute and monitor them.

3.4 Outline of the description of YML

The model of work�ow presented above is realized by YML. The description of YML
follows the organization in layers of the model. We �rst describe the interactions between
YML and its environment. We identify two kinds of interactions. We discuss the inter-
action between end-users and YML in the chapter 4. It focuses on the description of the
three front-ends available. In chapter 5, we describe the interactions between YML and
middleware. Back-ends assume an essential role. They are responsible for the interactions
with the middleware and they do the mapping between a work�ow process description
and middleware peers. Finally, chapter 6 presents the integration of external services such
as a numerical library within YML, the presentation of the work�ow process de�nition
language and the management of work�ow processes.
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Chapter 4

Front-ends: interactions with users

4.1 Introduction

In the previous chapter, we presented a model of work�ow. The realization of YML is
mapped directly to that model. In this chapter, we present the front-ends layer. It de�nes
the mechanisms to interact with YML, available to end-users. The latters can interact
with YML using one of the three front-ends available.

The integrated development environment is dedicated to the de�nition of work�ow
processes and services. This tool provides a convenient environment based on wizards to
create and edit the XML documents composing a YML application.

The web portal is used to control and administer the execution of YML applications.
Once a work�ow application has been registered into the portal, users can schedule and
execute applications from this web based environment. Emphasis is given on the mon-
itoring and the result analysis of work�ow applications. The portal can be extended to
support application speci�c visualization.

The last front-end provided is composed of command line tools built upon the com-
ponents de�ning the kernel layers. Those tools are not interactive and are targeted to
expert users of YML. They are used by both the IDE and the web portal underneath it.

4.2 Integrated development environment

A YML application consists in a set of de�nitions. A de�nition corresponds either to
a service or to a work�ow process. A detailed presentation of the YML work�ow pro-
cess de�nition language and of services creation is given in chapter 6. Each de�nition is
represented as an XML document. Most XML documents of a YML application incor-
porate sections of text which correspond to programs in another language. For example,
concrete service de�nitions embedded C++ fragments. Graph service de�nitions and
work�ow process contain sections written using the work�ow process de�nition language.

The IDE is focused on the development of applications. It targets developers of work-
�ow processes as well as creators of services. It proposes a GUI dedicated to the edition of
documents composing an application. The GUI allows the edition of multiple documents
organized in projects. The IDE is built upon the model-view-controller design pattern.
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It allows the edition or visualization of documents using one of the available views. The
same document can be viewed and edited from any views. In order to simplify the creation
of new documents composing a YML application, the user can be assisted by a wizard.

While the IDE is focused on the creation of applications, the second front-end is
dedicated to applications' submission and monitoring.

4.3 YML web portal

The study of linear algebra methods such as MERAM involves many parameters. It also
requires a lot of experimentation because of the lack of applicable methods to �nd the
suitable parameter to use for a particular problem. It is thus interesting to have a tool
which allows to easily test parameters and do the analysis of the results automatically.
YML assumes the execution of the application. However the analysis itself and the pro-
duction of plots are not incorporated within the work�ow because those depend on the
analysis of the logs. In the mean time, we were interested in a solution which requires
as little knowledge of the runtime environment as possible on the one hand and in the
mean time which eases the collaborative works. The YML web portal proposes a solu-
tion to these needs. The application domain which motivates this portal is linear algebra
methods. However the solution proposed is not limited to them.

Generic portal solutions such as XCAT[110], Discover[124] or GridPort[161] target
only GRID middleware based on Globus Toolkit. Such environments su�er from the same
weakness as the Globus Toolkit: its complexity. However, those solutions are interesting
because they have become services of the GRID itself. This kind of portal cannot be used
in the context of YML. Indeed, YML hides the underlying middleware to the user. A web
portal for YML, in order to be usable on top of any supported middleware, has to rely
solely on the components exposed by the integration service and kernel layer.

YML provides a second front-end which covers all actions related to the execution of
a YML application. It proposes a light client graphical interface for handling the pre-
processing, the processing and the post-processing of YML applications. The web portal
guides the end-user during the plani�cation of an execution using wizards or step-by-
step assistants. It monitors the execution of the application in real-time and proposes
mechanisms to extend the monitoring by enabling visualization.

The portal consists in a list of registered applications. Once registered, the user can
manage the execution of application, create a new execution or monitor current and past
executions. The portal de�nes a set of hooks which can be used by an application to
customize the behavior of the portal. The registration process allows to associate an
application with several hooks. Hooks are used to allow an application to modify the
behavior of the portal to best suit the application caracteristics.

The portal provides facilities to support all the steps of the exploitation of applications:
the pre-processing, the processing and the post-processing. The pre-processing consists in
applying a �rst pass on the data of the application to prepare it for the execution. It can
for example consist in a sparse matrix conversion from one storage format to another, the
fragmentation of a matrix in fragments or more generally, the validation of parameters.
All applications registered provide at least one pre-processing form. The latter allows to
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create a new execution of the active application. The form is automatically generated
based on the list of parameters de�ned by the work�ow applications. This is the basic
form of the pre-processing stage always available. Hooks are available to register the
execution of third party applications before the start of the execution of the work�ow.

The processing of the work�ow itself is handled by the YML scheduler component of
the kernel layer. It is not an interactive process. Thus the processing stage consists mainly
in providing information on the progress of the execution in real time. The processing and
the post-processing are tightly related to each other in the portal. Indeed, the monitoring
and the visualization are based on the same construction: the notion of view.

4.3.1 Monitoring and visualization views

The most interesting aspect of the application portal consists in the monitoring features.
The execution of an application can be monitored in real-time and organized in views.
Each view is dynamically created based on the analysis of the logs associated with a
query. Views are either default views available for all applications or speci�c ones. They
are based on the analysis of various information sources generated by the scheduler com-
ponent. Sources include query states and query logs generated during the execution of the
application. The logs of the query contain information issued from various sensors gath-
ering information on the remote peer and embedded within concrete services. A YML
component generator automatically integrates default sensors which are used to de�ne
generic views. Each application can add its own sensors during the creation of YML com-
ponents. Figure 4.1 presents a standard view. It displays the YML program associated
with the currently selected query. One can see the three applications registered on the
left and the YML client on top. On the right of the screen, the top of the content of the
page lists all the views available for an application. This example application is MERAM.
It is a linear algebra method and will be described in chapter 8. The �gure shows that
a MERAM application de�nes �ve views. It makes use of four standard views: Status
which displays statistics on the application execution (number of tasks waiting, executing,
etc), Query showing the YML work�ow description of the application (this is the view
presented on �gure 4.1), Log displaying the logs of the application execution and �nally
Workers listing the contributions of remote peers. The last view is speci�c to MERAM
and is discussed in the next section.

4.3.2 Applications integrations

The integration of an application in the web portal consists in de�ning an application
description script and dropping it in a special folder of the web portal. The portal detects
the new application script and displays a set of entries in the application list.

Each application register provides four pages. The �rst page contains the description
of the application, a list of the available views. The second page is used to schedule a new
execution. It proposes a wizard which guides the user in setting up a new application.
The third page allows to monitor current and past executions of the application. Finally
the fourth page is the application execution monitoring.
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Figure 4.1: YML web portal monitor: the query view (generic)

An application description script contains several sections. The �rst section includes a
description of the application and of the various parameters involved. The second section
describes the wizard used during the application submission. A wizard is composed of
successive pages. Each page corresponds to a set of parameters. Parameters de�ned at
step n can be used in step n + 1. The wizard can contain logic associated with next
and previous hooks of each page speci�ed. This can be used to integrate pre-processing
operations of the data. The last section of the application description �le lists the views
that are available for the current application.

The creation of application speci�c views is the most di�cult aspect of the integration
of an application into the portal. Sensors are parsed and organized automatically by the
web portal before the view creation is executed. Sensors data are transmitted to the view
which needs to �lter them and map data to the generate a visual representation.
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In the context of MERAM, we added one speci�c view. It creates a visual represen-
tation of the evolution of the various ERAM processes composing a MERAM. Figure 4.2
shows the execution of a MERAM application consisting of four ERAM processes. This
view relies on the de�nition of a sensor that exports the accuracy of intermediate results
created at the end of each iteration. Each process is executed asynchronously from the
others and bene�ts from their intermediate results. The study of the restarting strategies
requires such visualization techniques.

Figure 4.2: MERAM Convergence: an application speci�c view example

The view model based on sensors eases the separation of the logic and the represen-
tation of the data. It is interesting to enforce this separation in order to enable re-use of
the logic and the quick de�nition of various representations showing di�erent aspects of
an execution.

4.4 Command line tools

The third front-end is a collection of command line tools which wrap components of the
kernel layer into standalone applications. The exposed YML components are the service
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generator, the work�ow compiler and scheduler, a tool to prepare the parameter of a
work�ow execution, and the data repository component of the back-end layer. Command
line tools are not interactive, they are console software easily integrated within scripts.
They support the two graphical front-ends presented previously.

An ongoing work called the manager component aims at providing web services which
wrap all the command line tools presented in this section. The goal of the manager is to
act as a broker for remote clients of YML.

4.5 Conclusion

YML de�nes three front-ends. An IDE is available for applications developers. It provides
multiple ways, called views, to edit the document needed to create YML applications.
The IDE provides wizards to drive the creation of services as well as work�ows. Once an
application has been de�ned, a second front-end can be used to exploit YML application.
It consists in a web portal. It covers the pre-processing, processing and post-processing of
applications. The web portal is based on the notion of views and sensor. Each application
published on the portal comes with a set of prede�ned views which are used to monitor
the execution of an application. Applications can also register new dedicated views to
do post-processing operation or visualization. We described some speci�c views used to
visualize in real time the evolution of the convergence of MERAM as well as global e�ect
on wall of images. The IDE as well as the web portal both rely on a set of command
line tools which grant direct access to the component of the kernel and service integration
layer.

The web portal described in [48] has been used to present YML on the INRIA booth
at SuperComputing conference (SC) in 2005, 2006 and 2007.



Chapter 5

Back-ends: interactions with

middleware

5.1 Introduction

In the previous chapter, we presented interactions between the user and YML through its
front-ends. This chapter focuses on interactions with middleware.

The component oriented model on which is based the realization of YML de�nes a
back-end layer. This layer is responsible for the interaction between YML and middle-
ware. Its goal is to allow YML to execute a service on a peer. In order to accomplish
this, the back-end layer de�nes three components: the back-end, the worker and the
data repository. These components interact with the middleware to provide a consistent
execution environment to YML services.

In its current version, YML realization de�nes two back-ends. One allows the execution
of work�ow processes on top of XtremWeb [33], a global computing peer to peer system.
The other one provides support for the OmniRPC [149] middleware which targets cluster,
cluster of clusters and grid middleware. The OmniRPC back-end has been created by
Laurent Choy3. Through his contribution, he has been involved in most aspect of the
back-end layer and contributed to the data repository and worker components which will
be presented later in this chapter.

In this chapter, we present the back-end layer of YML. We �rst discuss the model on
which are based all back-ends. We detail the realization of the components of the back-end
layer and the integration of XtremWeb and OmniRPC. We then present an extension to
the back-end layer which allows the execution of a work�ow process to spread over several
middleware. Lastly, we present an alternate use of back-ends to simulate and assist the
users in the creation of YML work�ow processes.

3MAP Team, LIFL, University of Lille
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5.2 Back-end model

According to our model, back-ends are used to connect YML with middleware. This
layer consists in several components which interact to provide a consistent environment
to execute services involved in a work�ow process. The back-end layer consists in three
components named back-end, worker and data repository.

The back-end component is a client of middleware services. It permits YML to request
the execution of a work on a peer. It also noti�es of work terminations. The application
executed on peers is the YML worker component.

The worker component is a service container. It de�nes a consistent environment for
the execution of a service. Among the tasks assumed by the worker, the most signi�cant
is data management. The worker is responsible of importing data for the service and
exporting its results. In order to do that, the worker component interacts with data
repositories.

Data repository components are responsible for all data exchanges between two peers
and with the other components. A data repository component provides two services to
its local or distant clients: the publication of a resource and its retrieval.

Figure 5.1 represents the interactions with middleware, between the components of
the back-end layer and with the other layers of YML. In the remainder of this section we
put at the end of some sentence a number inbetween parents. These numbers corresponds
to the step of the execution of a work submitted by the kernel layer. If two number are
identical it means actions are potentially concurrents. In this example, we present the
execution of a single service part of a work�ow.

5.2.1 Back-end component

A back-end component hides the speci�city of some services provided by middleware be-
hind a common, and minimalist public interface. In 1.1.4, we emphasize on the only widely
available facility common to most middleware. It consists in the remote execution of an
application. This capability is widely available. Nevertheless the submission mechanism
varies signi�cantly from one middleware to another. The back-end component hides the
di�erences between middleware and provides a uni�ed set of features to the other layers
of YML, and especially the scheduler of the kernel layer (1a).

The back-end component allows the submission of asynchronous invocation of applica-
tions on peers. The corresponding service of a middleware has been generalized in chapter
3 and is named the resource scheduler. The role of the latter is to match a received re-
quest with an available peer or a set of peers. The selected peer must also match the
requirements of the request. The resource scheduler selects arbitrary a peer and assigns
it to the execution of the request (3). The content of the request varies signi�cantly from
one middleware to another. The back-end component translates YML service execution
into requests understandable by the resource scheduler of the middleware currently used
(2).

The back-end also polls the middleware in order to get termination noti�cation of
active requests (9). A back-end must execute several requests asynchronously. Regularly,
YML contacts the back-end component to retrieve the status of submitted requests (10).
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Figure 5.1: Back-end model

A back-end component maintains a list of active requests and a list of �nished requests.
The polling of the middleware allows the back-end to move requests from the active queue
to the queue of �nished requests.

In YML, a request consists in the execution of the worker component on a peer. Thus,
the back-end allows YML to ask the middleware to execute many instances of the YML
worker and to be noti�ed when one terminates. The back-end component is a client of
middleware services.

5.2.2 Worker component

The worker is a component responsible for the execution of a service. Services represent
computations needed for the realization of a work�ow process. In order to allow the exe-
cution of a service by a middleware, we introduce the notion of worker. It is a component
which acts as a container for the execution of a service. The execution of a service (6)
can be decomposed in the following steps:

1. retrieval of the work description,
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2. retrieval of the concrete service binary (5),

3. retrieval of the input data (5),

4. execution of the concrete service binary on the input data (6),

5. publishing of the output data (7),

6. cleanup

When the worker component is started on a peer, it �rst analyzes a work description.
This work description contains all the information needed to execute the service. It
consists in a list of resources to retrieve from the data repository component, the parameter
of the service as well as the destination of the results. The resources retrieved are the
service and its input (5). The service is then executed. It generates a set of results as well
as some meta-information such as the status reported by the service, the list of results
produced and a trace of the execution of a service. These information are published to
the data repository component together with the results of the service (7). The worker
�nally cleans up the peer and �nishes its execution (8).

We introduce �rst the worker component to limit the number of applications which
needed to be registered in the middleware. The bene�ts of this approach are multiple:

• The addition of new services is simpli�ed. Services are registered once to YML.

• A service can be changed more easily. It does not need to be registered to the
middleware every time it is changed.

• Services are instantiated on demands. One service can be executed numerous time
concurrently.

• Middleware are not aware of the exact service used and there is no way to di�eren-
ciate a work�ow process from another.

The worker provides a consistent environment from one middleware to another. Through
the use of the worker, all services can be shared between supported middleware. They
do not include any mechanism to handle the speci�city of middleware. The aim of the
worker component is also to factorize all operations common to all services. Services are
limited to the minimum, that is the computation.

In the context of large scale distributed systems, peers are shared between many users.
As a consequence, each execution of an application on a peer must revert all changes
made to the peer at the end of its execution. This aspect is most of the time handled by
middleware. However, it is not always the case. Thus, the worker must enforce peers to
be left una�ected after the execution of a service.
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5.2.3 Data repository component

The data repository component is used each time a data transfer is needed between YML
and a worker. The data repository component provides an exchange area between workers
and is meant to support indirect communication mechanisms introduced in the architec-
ture model. The model requires the component to support two operations: put(resource)
(0,1,7) and get(resource) (5,11). In the context of the data repository, a resource is a
name associated to a memory area containing arbitrary data.

5.3 XtremWeb and OmniRPC back-ends

5.3.1 XtremWeb back-end

5.3.1.1 XtremWeb overview

XtremWeb [33, 72, 198, 73] is a desktop grid middleware. The targeted networks consist
of several independent distant sites creating a unique pool of resources. XtremWeb makes
use of remote peers idle time for executing work requests. The system de�nes three roles:
dispatcher, clients and workers.

The dispatcher manages the whole system organization. It acts like an authoritative
entity for the whole platforms and ensures communication between workers and clients.
All communications in XtremWeb go through the dispatcher but are always initiated
from workers and clients similarly to standard services on the Internet. This policy is
required to bypass security mechanisms such as �rewall present on each site involved in
the middleware. The problems caused by the presence of �rewall prevents any synchronous
messaging between peers and even direct communication between peers.

Clients and workers are the two roles which are commonly assumed by peers. A
client submits a work to the dispatcher. A work consists in an application and a set
of data. The work is stored on the dispatcher and the client received a work identi�er.
The work identi�er is used to check the status of the work and retrieve its results on
completion. Workers assume the execution of work. They iterate through the following
actions: contact the dispatcher to require a work, download the work, execute it and
transmit the results back to the dispatcher.

XtremWeb allows clients, workers and dispatcher to leave the system at any time. Fault
management is one of the priority of the middleware. The system status is maintained
even if the dispatcher faults. In this case all workers and clients wait until the dispatcher
is available again. In this middleware the client cannot control which peer runs a work.

Figure 5.2 details the various steps needed to run a work on XtremWeb. We previously
explained that all communications go through the dispatcher and that XtremWeb does
not allow direct communication between workers and clients. The execution of a work
requires at least 6 steps. The client submit a work (1). The dispatcher stores the work and
wait for a work request from a worker (2). The dispatcher transmits the work information
to the worker (3) which computes the results and sends them back to the dispatcher
(4). Asynchronously, the client makes regular check for the work completion (5) until the
results are available on the dispatcher (6).
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Figure 5.2: XtremWeb Middleware: work execution

5.3.1.2 XtremWeb back-end

The back-end behaves like a client of the XtremWeb systems. XtremWeb client interact
with the dispatcher using a protocol similar in to the XML-RPC speci�cation [197]. The
XtremWeb dispatcher understand a slightly not compliant version of XML-RPC. The
back-end use this protocol to communicate with the dispatcher. Any communication
with the dispatcher is done using its own TCP connexion. The actions supported by the
XtremWeb dispatcher are really basics. It is possible to submit a single work, to retrieve
its status and its results. However you cannot check for the status of a set of works
in a single action. It means that each time you poll XtremWeb to check if one of the
work submitted by the back-end is �nished, you have to check the status of each running
work individually. The time needed to retrieve the status of all work currently ruining is
signi�cant. The back-end also su�ers from the lack of noti�cation systems. The back-end
must poll regularly the dispatcher for �nished works. XtremWeb back-end is not oriented
toward performance. This back-end introduce a lot of latency and it can takes several
seconds from the time of a work submission to the start of the work on a peer.

Nevertheless, XtremWeb is interesting as a back-end for the following reasons: the
scalability of the platform is important. XtremWeb is able to execute millions of work in
a week on a real platform composed of desktop computers and workstation of a university
campus. XtremWeb is also representative of the most di�cult class of middleware targeted
by YML. It is dedicated to the execution of embarrassing parallelism based application
such as Monte-Carlo simulations [118]. It is also useful to de�ne the minimum set of
requirement which is expected of a middleware.
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5.3.2 OmniRPC back-end

5.3.2.1 OmniRPC overview

OmniRPC [149, 120, 131, 192] is a middleware which targets master worker applications
for clusters, cluster of clusters and grid(globus, PBS, Sun Grid Engine) environments.
OmniRPC proposes a thread safe API for the execution of synchronous and asynchronous
RPC and the associated runtime.

RPC frameworks all follow the same mechanism. An interface de�nition language
(IDL) is used to generate most of the code of the service. In OmniRPC an IDL de�nes the
concept of module. This last can contains several de�nition (or service) which incorporate
both the interface and its implementation in C or Fortran. IDLs are processed using a
generator which creates the remote executable.

Remote executable (REX) are programs which provides one or several methods to be
invoked by clients. OmniRPC does not manage the deployment of the remote executable
which is left to the user. As OmniRPC targets clusters, cluster of clusters and grids
middleware, the deployment of remote executable binary is often simpli�ed by distributed
�le systems.

OmniRPC supports applications written in the master/worker[152] model. A client
contains the control �ow of the application and delegates time consuming operation to
distant peers. The communication between the client and the remote executable depends
on the invocation method speci�ed for the peer executing the application. The commu-
nication mechanism used might depend on an agent responsible for the invocation of the
remote executable and the communication with clients. The agent can also be responsible
of managing a subset of workers.

Figure 5.3 shows the execution of a work using OmniRPC and agents. The di�erence
with XtremWeb regarding communication mechanism is signi�cant. In OmniRPC com-
munication are initiated from both master and workers. The agent is used to relay and
multiplex communication between master and workers.

5.3.2.2 OmniRPC back-end

The OmniRPC back-end allows YML to make use of OmniRPC in its version 1.0. The
back-end also supports version 2.0 of OmniRPC but it does not take advantage of it yet.
OmniRPC back-end relies on the worker and data repository components. The worker
component is register and deployed as an OmniRPC remote executable. As we have
seen previously, the worker interpret the work description, acquire the service, its data,
and control the service execution. The worker and data repository components were �rst
introduced to overcome the limitation we faced in OmniRPC in its version 1.0. The two
components are now used by all of our back-ends.

The recently available version 2.0 of OmniRPC introduces many appealing features,
such as �le parameters, integration with data persistence mechanism and OmniStorage[5]
for optimizing communications.
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Figure 5.3: OmniRPC middleware: overview

5.4 Globalization of computing resources through dy-

namic middleware selection

A back-end allows YML to exploit one middleware. Middleware interoperability is achieved
by the model presented so far. However, the model does not allow to exploit multiple
middleware at the same time. This section presents an extension to the back-end layer
which allows YML to exploit several middleware at the same time.

5.4.1 Motivations

Computing tools available on high performance systems try to bene�t from the most
larger scope of architectures. Successful solutions are available on multiple architectures
to provide a consistent environment to end users. The evolution toward cluster of clusters
and grids leads to heterogeneous architecture. In a near future, the evolution of multi-core
processors or the integration of specialized processing unit will lead to heterogeneity at
the level of processors. Many application can bene�ts from this heterogeneity.

Similarly middleware evolved in numerous directions. They tend to provide solutions
adequate to speci�c usage such as massive data processing, independent low communica-
tion processing, etc. This heterogeneity is interesting to exploit this heterogeneity during
the allocation of resources to works of a work�ow process.

The aim of the globalization of computing resource is to provide an extension to the
model of back-end presented before. This extension allow YML to use several middleware
to execute YML applications. In the meantime the solution allow several work�ow to
be executed concurrently on the same collection of middleware. This solution provides
global management of computing resources and dynamic selection of the middleware used
to execute works of a work�ow processes.
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5.4.2 Extensions to the model

In order to globalize computing resources, we extend the model presented in section
5.2. The extension consists in three components. A multi-back-end back-end component,
similar to the one used for XtremWeb or OmniRPC, connects to a back-end manager
component. The back-end manager is associated to one or several middleware using
the third component named the back-end connector. This last is used to bind regular
back-ends such as the one for XtremWeb and OmniRPC with the back-end manager
through a network connection. Figure 5.4 shows the components introduced to allow the
globalization of resources. On the left, we represented the initial model, and the right
side of the �gure presents the component of the extension.

Figure 5.4: Globalization of computing resources using back-end managers

5.4.2.1 Back-end component

YML interacts with the middleware through a back-end4. This is unchanged by this
extension. However, the back-end component used does not communicate directly with
middleware. Instead, it establish a connection with the back-end manager. This back-end
is connected with the back-end manager via a network. This is the �rst step toward a
distribution of YML. It also allows several work�ow processes to be executed concurrently
by the same back-end manager.

5.4.2.2 Back-end connector component

On the opposite, regular back-end components such as the one for OmniRPC and XtremWeb
are used to interact with middleware. This is unchanged. However, they do not integrate
any mechanism to communicate with the back-end manager. We introduce a component

4called multi back-end



60 Chapter 5. Back-ends: interactions with middleware

named the back-end connector. This connector is used to relay information between the
back-end manager and the back-end component.

5.4.2.3 Back-end manager component

The back-end manager is the main component of this extension. It behaves as a proxy
between work�ow process schedulers, presented in the next chapter, and middleware. The
back-end manager interacts with two kind of components presented previously. The back-
end manager act as a proxy between a set of YML work�ow processes being executed and
a set of middleware providing computing resources.

The back-end manager de�nes the notion of clients. Clients are of two kind: work�ow
processes (or applications) and middleware. The two group of clients interact with each
other through a component internal to the back-end manager called a dispatcher. Its role
is to dynamically assign work to middlewares. In order to do that it can makes use of
information such as history of previous works execution, middleware statistics and load.

The dispatcher component is de�ned in order to allow future research in scheduling and
allocation strategies multi-middleware. Many strategy can be de�ned which can enforce
some of the following criteria: fault-tolerance, quality of services, computing capacities,
software availability, load-balancing, etc. These topics need a lot of experiments and open
numerous researches related to scheduling strategies in the context of multiple middleware.

5.4.3 Conclusions and research perspectives

Due to the component oriented design methodology used in YML, we de�ned an extension
of the back-end layer which reuse existing components of the back-end layer, and requires
no change to the other layers of YML. This extension allows a globalization of comput-
ing resources. It means that several work�ow processes can use concurrently multiple
middleware to support their executions.

The design presented previously allows transparently the creation of hierarchies of
back-end managers. It also allows to create pool of back-end which interact with a single
middleware without any modi�cation to the current realization. This aspect of YML is
highly experimental. However, the perspective of research in scheduling and load balanc-
ing are numerous.

5.5 Execution, simulation and debugging of applica-

tions

YML is a framework to develop and execute applications for large scale distributed sys-
tems. The back-end layer hides the heterogeneity of middleware and computing resources.
However, the development of a complex work�ow is still a di�cult process. Speci�c back-
end components can be used to de�ne helper tools. They assists end users during the
testing and validation of work�ow processes. YML de�nes two additional back-ends used
solely during the development of the work�ow process.
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5.5.1 Process back-end

The process back-end is used to execute the application on a single host without using
a middleware at all. It relies on the capabilities of multitasking of modern operating
system to execute a work�ow process. The behavior is identical to the execution on a
distributed system. This back-end is not a simulator because the execution e�ectively
produce the result similarly to an execution using a standard back-end such as OmniRPC
or XtremWeb. The process back-end integrates a worker component. Service involved in
the execution of a work�ow are used the same in the context of the process, XtremWeb
and OmniRPC back-end.

5.5.2 Dot output

A work�ow execution can be represented using an acyclic directed graph which start from
the start node and reach the The dot back-end does not execute anything as do the process
back-end. It creates a graph representation which can be processed by the Graphviz tool
in order to display visually the dependencies between tasks composing the application. It
provides a visual representation of the execution of an application where all tasks have
an identical execution time.

5.6 Conclusion

Back-ends assume a critical role, they are the interface between middleware and the rest
of the work�ow environment. To highlight the importance of the back-end layer, we make
an analogy between a parallel computer and a middleware. Indeed, if one can only access
to the hardware of a high performance computer, the creation of application is really
di�cult. An high performace system is not only naked hardware, it is also a collection
of software layers. Each layer increases the abstraction level in regards of the hardware.
This is similar to a middleware. The aim of a middleware is to provide an access to
distributed hardware resources. A middleware does not have to do anything else. Its role
is to provide a collection of API to allow the end-user to exploit distant resources. Those
API coupled with middleware resources provide the same level of abstraction as operating
system and hardware of high performance systems.

The heterogeneity of peers involved in a middleware and the lack of standards in the
API makes the development of application really complex. This motivates the de�nition
of an homogeneous runtime environment on top of them. This is the aim of the back-end
layer. The back-end layer increase the level of abstraction by simplifying the usage of
the middleware and providing a single mechanism to access them. It allows to create a
runtime environment composed of resource from multiple middleware. This is similar to
some extent to the use of several high performance system coupled using solution such as
PVM or MPI_Connect.

YML in its current version support two middleware: XtremWeb, a global computing
environment and OmniRPC, a GRID middleware. Through the mechanism of back-end
and the introduction of an additional layer, we presented the notion of back-end manager,
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which can be use to combine several back-end to support the execution of an application.
Whether one or several middleware are use is hidden to the other layer of YML.

Ongoing works on the back-end layer are related to performance imporvement. At the
time being, the overhead introduces by the back-end layer is high and can be signi�cantly
reduce. Works in this area includes cache mechanism applied to the concrete service as
well as to the input of each service execution. This last aspect is the most di�cult to
achieve in the current implementation. Indeed, to makes the communication easier, we
are currently pack the results on persistent storage and we send them afterwards. A better
approach would be to create the pack directly while sending the data in order to avoid
this uneeded copy on persistent storage. The use of packing mechanism for collection
of �les is also incompatible with cache mechanism. In order to allow caching of service
execution data, we need to �rst remove the packing of data and make each resource
independent. This require to extend the data repository to support new operations. In
the mean time, the collection of information about peer is really basic at the time being,
a more detail collection of information which could include, memory, CPU information or
storage available could be really interesting in the context of allocation of service execution
to peers available.



Chapter 6

Services integration and work�ow

management

6.1 Introduction

In the previous three chapters, we presented the modeling of a work�ow environment
called YML, the interaction between end-users and YML and the interaction between
YML and the middleware. This chapter discusses the kernel layer of YML. The kernel is
responsible for the management of services, the compilation and the execution of work�ow
processes.

In YML, a work�ow is de�ned as a collection of independent, reusable services. Ser-
vices are coupled with each other by using a work�ow process de�nition. The work�ow
process de�nition is a description of the control �ow of the application.

The remainder of this chapter is organized in �ve sections. The section 6.2 presents
the notion of services and the mechanisms available to integrate them within YML. The
section 6.3.1 describes the work�ow processes description language used. Section 6.3.2
presents the theoretical model used internally by YML at the time of the work�ow execu-
tion. Section 6.3 presents the compiler and the scheduler of work�ow processes. Finally,
we conclude the presentation of YML.

6.2 Services integration

A work�ow process describes the interaction between services involved in its execution.
The scheduling of a process consists in accurately instantiating services on peers. In this
context, accurate means that services must be instantiated with the appropriate input
data when all services on which it depends have �nished their execution. The instantiation
of a service is handled by the worker component described in 5.2.2.

YML describes its services as XML documents. Three kinds of services exist. They
are needed to allow the separation between a middleware independent application repre-
sentation and the execution of the concrete work�ow on a chosen middleware.
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6.2.1 Abstract, graph, concrete and built-in services

YML is modeled as a collection of independent components which interact with each other
by using well de�ned public and abstract interfaces. Services also follow this rule. How-
ever, the principle of separation between the interface and the realization of a component
is enforced by the need of two de�nitions for a working service. A �rst de�nition is used
to specify the public interface. This interface is named Abstract service.

An abstract service focuses on the de�nition of the inputs and outputs of a service.
A component can de�ne three kinds of communication channels. A channel can be one
sided and support either input (noted in) or output (noted out). It can also be two sided
(noted inout) and support at the same time input and output. Channels are strongly
typed. Only two channels of the same type can be connected to each other. Abstract
services are similar to a declaration in the C language. It is used by the compiler of
work�ow processes for validation purpose.

An abstract service de�nition is an XML document. Listing 6.1 is an example of
such a de�nition for a really simple component which applies a binary operator to two
real numbers. More complex examples will be presented in chapter 8. In this example,
we de�ne three channels of type real using either inputs or output and one channel of
type string to specify the operator expected in input. The abstract service is named
binaryOp.

<?xml version=" 1 .0 "?>

<component type=" abs t r a c t " name="binaryOp"
d e s c r i p t i o n="Apply a binary  operator  to  the  two operands  op1/op2 . " >
<params>

<param name=" r e s u l t " mode="out" type=" r e a l " />
<param name="op1" mode=" in " type=" r e a l " />
<param name="op2" mode=" in " type=" r e a l " />
<param name="operatorName" mode=" in " type=" s t r i n g " />

</params>
</component>

Listing 6.1: Example of abstract service

The de�nition of an abstract service does not incorporate any information on how
the service is realized or what it e�ectively does. This is just the public interface of the
service. There are two ways to realize or implement a service in YML. One can create
either a concrete service or a graph service.

A concrete service de�nes a binary application which is going to be executed on the
underlying middleware. For the same abstract service, multiple concrete services can be
registered. Concrete services are also refered as implementation services because they
incorporate code in one of the language supported by the YML component generator
services. Concrete services are similar to the de�nition of a function in a third party
library. The function can be a function in C or in another language interoperable with C
such as Fortran. At the time of this writing, it is possible to create components using the
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C or the C++ language. Concrete components can depend on external libraries. We will
present this aspect later in this section.

<?xml version=" 1 .0 "?>

<component type=" implementation " name="binaryOp_impl"
ab s t r a c t="binaryOp">
<impl lang="CXX">

<header>
// t h i s i s used to p lace C++ code at the beg inning o f the generated
// s e r v i c e

</header>
<source>

// Here we wr i t e a C++ program which can use the name o f
// channel p r ev i ou s l y de f ined in the ab s t r a c t component .

// The three channe l s are requ i red , here we en f o r c e t h i s
i f ( ! op1_param . e x i s t s ( ) | | ! op2_param . e x i s t s ( ) | |

! operatorName . e x i s t s ( ) )
e r r o r ( ) ; // One o f the r equ i r ed channel i s mis s ing

i f ( operatorName == "−" ) r e s u l t = op1 − op2 ;
e l s e i f ( operatorName == "+" ) r e s u l t = op1 + op2 ;
e l s e i f ( operatorName == "∗" ) r e s u l t = op1 ∗ op2 ;
/ / . . . more binary operator
e l s e e r r o r ( ) ; // OperatorName does not match any supported one .

</ source>
<f o o t e r>

// This i s used to p lace C++ code at the end o f the generated code
</ f o o t e r>

</ impl>
</component>

Listing 6.2: Example of concrete service

A concrete service de�nition is an XML document too. Listing 6.2 relies on the
example of the binary operator abstract service. This example presents a realization of
the abstract service using the C++ language. Concrete services are tagged with the type
of implementation. The implementation refers to an abstract service name, in our example
binaryOp. This information is used to match a concrete service with its abstract service.
It is also used by the service generator component (discussed next) to create the skeleton
of the service. The user is only responsible for providing the logic of the service. All other
aspects are handle by the service generator discussed in the next subsection. For this
example we do not require any include or any function, thus we only need to complete the
source section of the component de�nition. For compactness, we could have omitted the
header and footer section completely. In the source section, we �rst check the existence of
the input parameter. Indeed, YML allows missing channels. If the channel name does not
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exist, it does not prevent the execution of a service. This feature is used for asynchronous
coupling of iterative methods discussed in chapter 8. The C++ generator for YML de�nes
a channel information object called <channel>_param which can be used to check various
channel states. If one of the required channels does not exist, the service stops, returning
an error status. Otherwise we analyze the value of the channel operatorName and apply
the corresponding C++ operator to the two operands and assign the result to the channel
result.

The second mechanism to realize an abstract service is to create a graph service. A
graph service allows to de�ne sub-work�ows that can be used in other work�ows. These
components are de�ned using the work�ow process de�nition language presented later in
this chapter. The language does not enforce any mechanism to do the expansion of the
sub-work�ow during the execution. It is for example possible to do parameter substitution
to incorporate the content of the graph service directly within the initial work�ow. In this
case the integration of the sub-work�ow occurs during the compilation of the work�ow.
On the other hand if the sub-work�ow is delegated to a new instance of the work�ow
scheduler then, the sub-work�ow expansion happens at the time of the execution and
thus is a more dynamic mechanism. The creation of such services relies on the de�nition
of an XML document like the above. The di�erences lie in the type attributes which take
the value graph, and the impl XML tag and its contents are replaced by a graph tag.
The contents of this tag are discussed in section 6.3.1.

Finally, the last kind of services are built-ins. They are similar to concrete services
in many aspects. However, they are part of the scheduler. Built-in services are executed
by the scheduler to modify the data of the application. They are executed directly on
the data store of the application. On the opposite, concrete services are executed on
peers provided by a middleware. Existing built-ins include deletion, rename and copy of
data manipulated by the applications. Other built-ins include operations on data types
directly supported by YML. Operations such as number addition and multiplication are
also available.

YML distinguishes itself from many other work�ows in the way it integrates external
software. YML uses a work�ow not as a tool to do code coupling but as a programming
model. Thus, it does not provide mechanisms to harvest existing services as it is the case
in projects such as Askalon, GridFlow or Kepler. In that respect, YML is more similar
to the approach used in GridAnt. In order to be able to list existing services, YML relies
on two catalogs.

6.2.2 Development and execution catalogs

The communication between the services integration module and the work�ow compiler
and scheduler is handled by two catalogs. They are used to store information about
services. The development catalog contains all the information needed during the com-
pilation of work�ow processes. The execution catalog is only used during the execution
by the YML scheduler. Both catalogs are realized as components. The implementation
of the two catalogs can be changed easily.

The development catalog stores abstract and graph service de�nitions alongside with a
list of existing channels or parameter types supported. These information are independent
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of the middleware used. They are used mostly by the YML work�ow compiler to produce
a middleware independent compiled work�ow. The realization of the component can be
change at runtime to better integrate with middleware catalog services if needed. This
catalog plays the role of the harvester services of other work�ow environments. It is also
interesting to note that by simply changing the realization of catalog, it is possible to
introduce harvesting technics within YML.

During the execution of a work�ow, the compiled work�ow is analyzed and converted
into a concrete work�ow. Every abstract services are substituted to corresponding con-
crete services stored within the execution catalog. The execution catalog stores informa-
tion about the list of concrete services available. This catalog is used only during the
execution of a work�ow process by the scheduler. As we have seen before an abstract
service can have several implementations. The selection of the most adapted concrete
component available can be made using several criteria such as the complexity of the
algorithm used, the complexity in memory or storage. However, this kind of metrics is
not reliable. With the introduction of the back-end manager, the selection of the most
adapted concrete service is even more complex. This extension would bene�t greatly from
the availability of more information about the previous execution of services. Indeed, the
selection of the most suited concrete services can be improved signi�cantly with informa-
tion on past execution of services and introduction of machine learning strategies. This is
on the perspective of research which can be followed to enhance the scheduling mechanism
of YML. For the same reason as of the development catalog, the execution one is de�ned
as a component for which the implementation can be changed to integrate best within
the middleware or the user environment.

6.2.3 services generation and registration

In order to be usable by the kernel layer components, a service must be registered within
one of the two catalogs. The registration of abstract and graph services is straightforward
and handled directly by the development catalog component. The registration of concrete
services however is more complex due to an additional step of generation.

The service generation component converts a concrete service into a binary component.
This component can be instantiated by the worker de�ned in the back-end layer. The
tasks of the generation of a component are tightly associated with the behavior of the
worker. As we have seen in chapter 5, the worker provides a consistent environment for the
execution of services on several middleware. The worker is responsible for the following
tasks:

1. acquiring the work data including the service itself,

2. executing the service,

3. transmitting the results back to YML,

4. cleaning up the peer.

The worker behaves as a container for the execution of services. Because all the com-
munications with YML are handled by the worker, the service only needs to communicate
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with the latter. In an heterogeneous context, relying on mechanisms such as network
communication or pipe is dangerous and introduces dependencies with the underlying
architecture. The only way to communicate in a portable way with another program is
to use �les.

6.2.3.1 Peer heterogeneity

We don't emphasize on the heterogeneity of peers involved in the middleware so far.
We identify two levels of heterogeneity. The �rst level concerns the architecture and
especially the order of bytes used to represent multiple bytes data such as integer or
�oating point values. The second level of heterogeneity concerns the operating system.
The latter is more di�cult to solve than the �rst one. However, we do not consider this
as a research topic. Many solutions exists to solve this. Java is one of the most well
known solution. However it is not suited in our context as it does only work well for
applications written completely in Java. This goes against one of our motivations, as
we wanted to be able to integrate existing libraries within the services part of work�ow
processes. One of the other possible solutions is the one proposed by XtremWeb. It
consists in providing several binary executables of the worker and of each service to match
the heterogeneity of runtime environments. This can be made transparent to the end-
users by setting up a cross-compilation environment alongside of YML. It is also needed
to extend the service generator component to generate multiple concrete services for each
runtime-environment. We do not consider this aspect challenging and assume that this is
only subject to implementation details.

However, in order to allow the above modi�cation of YML at a later time, we represent
each service by a binary executable. The communication between workers and services
relies on �les. This is hidden to the user and can be changed afterward if a more e�cient
solution is chosen. There is potentially another signi�cant advantage of this approach. A
service does not have to use any operating system speci�c mechanism to communicate. It
eases signi�cantly the cross-compilation of services. Indeed services can depend solely on
standard language features, services can thus be made portable at the application level.

6.2.3.2 Implementation language

In the example of a concrete service we presented earlier in this chapter, we used C/C++
to realize our components. This is currently the only language supported in YML. How-
ever, each language is supported by two components.

A source code generator component is used to produce a �rst view of a concrete service.
This view is a program source code in the language of implementation of the service. It
is then processed by a binary compiler component which converts the source code into a
static binary application. The selection of the two components above is made based on
the de�nition of the attribute lang in the concrete service de�nition. The creation and
registration of support for new languages consist in providing a new pair of components,
one for the source code generator and one for the binary compiler.
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6.2.4 External library integration

The integration of an external library consists in providing some services which allow to
use some of the features proposed by the library. This process is not automatic and cannot
be. The services in YML are stateless, they cannot share information between multiple
instances. Each service derived from a library must be made standalone.

We identify two concurrent activities to register partially or completely a library as
a set of services. The �rst step consists in de�ning data types. Data types are one way
to extend YML. They are used to de�ne channels between services. YML de�nes in
standard only a few types (integer, real, string and raw5). The integration of a data type
is dependent on the language support in the generator. However, once made available
it is transparent to the user of services. The de�nition of new types for YML can be
summarized as the de�nition of two functions, procedures or methods depending on the
language terminology. One is used during the import of input data. The second one is
used during the exportation of the output data. In order to allow the integration of any
kind of library, YML does not require a type to be built upon the basic types provided
by the system unlike CORBA.

Once types are de�ned, library features must be translated into abstract and concrete
services. Services often consist in a few calls to the library function. Most of the logic
being handled within the library. If we consider the example of library like Blas, The
best approach to integrate such a library consists in �rst de�nining new data types for
matrices and vectors of real and complex. Once type are de�ned, it is possible to provide
a simple wrapper which consists in a single call to all the procedure composing the library
or a subset. This approach has been used to a subset of Blas and LAPACK. As examples
of external library usage, the applications presented in chapter 8 are using libraries such
as zlib, libpng, BLAS, LAPACK, rayshade and LAKe. Aside of that, the integration of
BLAS and LAPACK as a mathermatical toolbox for YML is an going work.

6.2.4.1 Integration of the LAKe library

LAKe is an object oriented library written in C++. It de�nes a framework to implement
iterative solvers. The LAKe design is organized in two parts as shown on �gure 6.1. The
left section contains numerical algorithms and services. The right section focuses on data
management classes. They are used to represent both sequential and parallel data type
used by LAKe numerical part. Using the object oriented approach and template based
generic programming provided by C++, LAKe allows the numerical part to be common to
both sequential and parallel versions of the application. The numerical part of the library
is identical in the case of a sequential data set or distributed data set. The parallel version
of LAKe makes use MPI for the communication between processors. However the use of
MPI is completely transparent to the user. He/she can switch from a sequential solver to
a parallel one by changing the type of the matrix representing the data. A Matrix data
type is used for sequential version and DMatrix is used for parallel version of algorithms.
LAKe achieves code reuse between sequential and parallel versions thanks to a strict
separation between the numerical side and the data management aspects of applications.

5This is used to represent an arbitrary number of unformed data.
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Figure 6.1: LAKe: Design and Architecture

The integration of a library such as LAKe is a straightforward process because of the
object oriented approach used. Indeed, the decomposition in service is almost directly
given by �gure 6.1. The �rst step in integrating LAKe consists in de�ning data types.
LAKe manipulates three kind of objects that must be exchange between services: scalars,
dense matrices and sparse matrices. Scalars can be either an integer or a real. Both of
this type are supported by YML natively. They are part of the language. Dense matrices
are used in LAKe to represent a matrix or a collection of vectors. There is no explicit
notion of vector in LAKe. The meaning of the matrix is de�ned using a Partition. A
Matrix object can be decompose in subobject using a partition. Partition are also used
to validate the validity of operation such as matrices products or matrix vector products.

LAKe makes intensive use of a design pattern called service. This pattern de�ned a
mechanism which allows to loosely connect a service with its operands (in the context
of LAKe, those are mainly matrices). A LAKe service behaves similarly to the notion
of service of YML. Indeed, LAKe service expose a feature for the rest of the application
to use. The execution of a service requires �rst the connection of its operand. Once
all operand are connected the execution of the service itself is made possible. Before
releasing the service, one need to �rst disconnect the operand. This pattern is similar
to the execution of a service by the worker of YML. The main di�erence between an
application making use of LAKe and the integration of LAKe as a collection of YML
services is the lack of persistent state between two service execution. LAKe service are
all translated directly into YML service. However, LAKe is more than just a collection
of services. It also provides a framework to build iterative methods upon. Each iterative
method is a construction of a set of service. It de�nes the control �ow of a method. Those
are not translated to abstract/concrete services. Indeed it would not allow any parallelism.
Instead, they are translated to graph service or directly as an application work�ow. This
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is the case of Arnoldi_EV in the diagram presented above. An exception is the Arnoldi
class which is implemented as an iterative method in LAKe. The sequential Arnoldi
is implemented as a pair of abstract/concrete services. The parallel version is however
realized as a graph service or directly within the application work�ow. The use of LAKe
integrated with YML is illustrated in chapter 8.

6.3 Work�ow management

The kernel layer is responsible for the management of work�ow processes. It has to analyse
work�ow, convert them into a form suited for their execution, and �nally execute them
on one or several middleware using the back-end layer. The kernel layer links all layers
of YML together and manages the interaction in the whole environment. It acts as a
coordinator of the other components of YML. It is mainly composed of two components:
a work�ow compiler and a scheduler. It also contains the work�ow process de�nition
language, and the internal representation of an application.

Work�ow processes are de�ned using a graph description language speci�cally designed
for YML. This language is used to de�ne graph services as well as applications. It is
processed by a compiler in order to create an alternate representation of an application.
The latter is then processed by a scheduler responsible for the execution of the work�ow
on the underlying runtime environment exposed by the back-end layer.

6.3.1 Work�ow process de�nition language

In the previous section, we presented the integration of services within the work�ow envi-
ronment. This constitutes the �rst step in the creation of work�ow applications. Indeed,
services are used as building blocks for work�ow processes. The work�ow process de�ni-
tion language of YML is used to describe interactions between services. It is employed in
the de�nition of applications and graph services.

YML work�ow process de�nition language proposes a small and compact syntax simi-
lar to pascal and C. The language allows the de�nition of a graph where nodes are services
execution and edges are dependencies. The graph is built based on a control �ow analysis
of the program. In order to describe the graph, YML proposes several constructions such
as service calls, sequential and parallel iterations, parallel sections and events manage-
ment.

This example shows a way to express a reduction global operation using YML. A
second way will be presented while discussing the notion of collections. Examples of
reduction operations are the sum of the elements, the extraction of the maximum or
minimum, and any other operations which produce one result from a collection of values.
Listing 6.3 is an excerpt of a work�ow process de�nition. It shows a reduction operation
on a collection of objects. This example illustrates most of the constructions of YML. It
assumes that two services exist. The �rst service is named create, it generates an object
(a number, a string, etc). The second service is the reduction operator and is named
reduction. The goal of the reduction is to store the result in a data[1]. This result can
then be used in the rest of the application. In order to construct the result we apply a



72 Chapter 6. Services integration and work�ow management

binary operator reduction by simulating a tree. In a binary tree the children of a node i
are indexed 2i and 2i+1. The initial data is stored as children of the tree and the second
parallel section does the reduction and the computation of all inner nodes of the tree. In
order to synchronize the reduction operation, we explicitly use events manipulators wait
and notify. Using two parallel sections, the reduction can start even if all the objects are
not created yet. Finally, in the listing below, comments start with a # and terminate at
the end of the line.

# Const d e f i n i t i o n s
objectCount := 16 ; # va r i ab l e d e f i n i t i o n ( ass ignment )
intNode := objectCount − 1 ;
#data i s a c o l l e c t i o n o f ob j e c t s
#evtData i s a c o l l e c t i o n o f YML events
#the f i r s t item i s indexed objectCount .
par
# F i r s t p a r a l l e l s e c t i o n : Creat ion
par ( i := 1 ; objectCount ) do
# c a l l c r e a t e s e r v i c e and
# s t o r e the r e s u l t in data
compute c r e a t e ( data [ intNode + i ] ) ;
# dependency e x p l i c i t management
no t i f y ( evtData [ intNode + i ] ) ;

enddo
// # Second p a r a l l e l s e c t i o n : Reduction

par ( i := 1 ; intNode ) do
# wait f o r e x p l i c i t synchron i za t i on
# in order to c r e a t e node i we need
# to wait f o r nodes 2∗ i and 2∗ i+1
wait ( evtData [2∗ i ] and evtData [2∗ i +1 ] ) ;
# compute the reduct i on
compute reduct i on ( data [ i ] , data [ 2∗ i ] ,

data [ 2∗ i +1 ] ) ;
# t e l l node i has been crea ted .
n o t i f y ( evtData [ i ] ) ;

enddo
endpar

Listing 6.3: Example of the work�ow process de�nition language

The execution of services is identi�ed by the keyword compute. It is followed by the
name of the abstract service to execute. The concrete service is selected automatically
during the execution of the work�ow. It is followed by a list of parameters which denote
either data or constant value. It is also possible to give additional information to the
scheduler on the nature of the service. Currently, two classes of services are supported
in the language: migrate and compute. The �rst is used to highlight that the service
execution is to be considered as data manipulation or transfer operation with little com-
putation. The second is just the opposite and is used for any kind of computation which
requires a large amount of calculus. This information is dedicated to the scheduler which
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can implement di�erent policies according to the nature of a service.
The concurrency of two services of a work�ow is always introduced by the keyword

par. The �rst form is par block1 // block2 endpar. The second form is equivalent to
the �rst but is used to generate a collection of blocks which depends on one or several
iterators. The end of the parallel section is synchronization barrier. In this regard, the
parallel construction of YML is similar to OpenMP. A future extension to the language
will consist in adding parallel block without synchronization at the end of the execution
of parallel constructions. YML also provides iterator construction.

The YML language depends on the notion of events. Each dependency is expressed
implicitly or explicitly by using events. Events are similar to boolean values. They are
either set or unset. Events are identi�ed by name and can be organized in arrays. However,
explicit events are only used as parameters of notify and wait. The former is used to set an
event. Once an event has occurred, it is set for the rest of the lifetime of the application.
The latter is used to wait for an event. It is a synchronization mechanism. Integration
of exceptions to the language is easy. It can be achieved without any modi�cation of the
scheduler component relying solely on the existing internal representation of a work�ow,
as will be discussed later in this section.

6.3.1.1 Collections

YML supports the notion of collections. A collection is a group of data manipulated by
services as a whole. The language collections are introduced using square brackets. For
example, data[1] denotes the �rst element of a one dimension collection. data denotes
the collection as a whole. Index used to denote elements of a collection are integer
values. The index can be either a variable de�ned in the work�ow process or numerical
expressions. YML supports multi dimensional collections. There is no limitation on the
number of dimensions used. Collections are always sparse. The elements are only present
when assigned �rst. Each element of a collection represents data which can be used as a
channel for a service. Collections can only be populated through service calls.

Services handle channels/parameters transparently for the user which just has to focus
on the computation itself. This approach is e�cient for most situations. However, it is
restrictive with regard to two aspects. The life time of a channel is not managed by the
user. All channels exist from the beginning of the service to its end. A channel can only
handle one data. Collections solve both problems. Indeed, collections allow end-users to
control the life time of a data. A service creator is explicitly responsible for managing
the loading and the unloading of data. This enables services to make use of out of core
technics.

The second advantage of collections is the ability to manipulate many di�erent data
as a single channel. This allows a service to generate a variadic number of data. It
is not possible using regular channels. Indeed, a regular channel corresponds only to a
single data. On the other hand, being able to manipulate multiple data through a single
channel comes with a cost. All data composing a collection is transfered for each service
execution using it. This is however perfectly well suited for reduction, fragmentation or
defragmentation of data such as matrices. A collection allows to pass multiple parameters
grouped in an array together in order to manipulate them as a whole. Using collections, it
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is possible to create services which allow global operations such as all gather or reduction
to be present in traditional message passing solutions.

6.3.2 Application storage and internal work�ow representation

The work�ow process is converted by the work�ow compiler component into an applica-
tion �le. This application �le corresponds to an execution oriented representation of the
work�ow. This representation is well adapted to the scheduling of work�ow processes.

Many theorical models exist to support the execution of work�ows. Among them
we can cite projects like tuple space [179] or network of petri [167]. YML relies on a
traditional Arti�cial Intelligence technique known as �expert system�. Expert systems,
also known as rules engines, are often used in automatic demonstration systems. An
expert system relies on two concepts: the notion of facts and the notion of rules. A fact is
similar to a boolean value: happened or not happened yet. Facts are injected in the expert
systems either by the end user or following the execution of a rule. A rule is composed
of a condition and an action. The condition is a boolean expression based on facts. If
the condition is evaluated as true, then the action is executed. Actions are most often
composed of two steps. A �rst step is the execution of a side e�ect, such as the scheduling
of a work composing a work�ow process and the introduction of new facts in the expert
system. These new facts are used to allow new rules to be executed. The goal of the
expert system is to demonstrate a particular fact, called stop starting from the fact start.
A rule can generate multiple facts. Each time new facts are introduced, some new rules
are potentially executed. In the context of YML, each work composing a work�ow leads
to the de�nition of a rule. This rule contains a condition which is a boolean expression
based on events. Events are translated into facts of the expert system. The execution
of the work�ow is equivalent to demonstrating the event stop. The sole di�erence with
regular expert systems is the rule which can be used at most once in the execution of an
application.

An application �le is an archive composed of several resources which represent many
aspects of a work�ow application. Among them, the archive contains the table of rules
and the table of facts which contains the information needed by the expert system. The
application �le has the following properties:

• middleware independent: the application �le does not contain any information spe-
ci�c to one middleware. The application �le can be shared between installations of
YML as long as all sites use the same version of YML.

• multiple execution: the same application �le can be used for executing several ap-
plications using di�erent or identical input data.

• self contained: the scheduler does not need to access any information stored in the
development catalog. It only depends on the execution catalog to be able to execute
an application. The application �le also contains information to be used by the other
components of YML such as the web portal.
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6.3.3 Work�ow management components

YML de�nes three components in the kernel layer. The two main ones are the work�ow
compiler which converts a work�ow process into an application �le and a work�ow sched-
uler which executes an application �le. The last component is used to manage application
input and output.

6.3.3.1 Work�ow compiler

The work�ow compiler analyses, validates, and translates a work�ow process into an
application �le. The latter is used by the compiler for the execution. Most work�ows
do not depend on a compilation stage. They act more like interpreters. The work�ow is
processed, analysed, and executed at the same time. This approach is interesting and has
been used in an early version of YML presented in [49]. However, in the current version of
YML, the analysis and the execution are two distinct operations which do interact. The
aim of this separate stage is to decrease the amount of work needed during the execution
of a work�ow and to provide a more modular decomposition of YML.

The compiler is composed of a set of transformation stages which lead to the creation
of an application �le. The compiler expands the graph described by the work�ow process.
The application �le is the result of the packing of a collection of tables produced during
the compilation process. Among those tables, the most important ones are the tasks table
and the events table.

The current work�ow compiler is restricted to the generation of static work�ows. In-
deed, it generates the whole graph during the compilation process. The graph is thus ex-
panding during the execution. The main advantage of this approach is the complete knowl-
edge of the graph. This can be used for advance work�ow analysis and pre-scheduling
strategy or mapping of the work�ow graph onto peers of the runtime environment. How-
ever, the drawback of this approach is that the graph is �xed during the execution of the
application. Also, for really large graphs, the compilation time can become large.

6.3.3.2 Application parameter management

The execution of a work�ow can depend on input data and produce a set of results.
In order for the scheduler to use them, YML uses archives of data for both input and
output. The application data �le contains some meta information which lists the input and
output parameters. The parameter management component is dedicated to the handling
of archives used in many places within YML. The parameter management component
is especially designed to manipulate archives which are used as input of an application
and as output. It allows the user to pass and retrieve data at the beginning and at the
end of the execution of a work�ow. The component relies on meta information stored in
the application �le to drive the user in the registration of its input parameters and the
extraction of the results.
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6.3.3.3 Scheduler

The role of the just-in-time scheduler consists in executing the application on the un-
derlying runtime environment de�ned by the back-end layer. The scheduler takes an
application �le together with an input data set and executes the work�ow until comple-
tion or until the execution triggers an error. The input data set is created using the
parameters manager presented above. Once the execution has been initialized, the expert
system controlling the execution of the work�ow is initialized with the start event or fact.
Once the system has started, the scheduler applies rules and creates a list of works ready
to be sent to the back-end component. Once submitted to the underlying middleware, the
work status is changed to running. This status lasts until the back-end has been noti�ed
of the termination of the work which is then in status �nishing or error if its execution
has encountered a problem. Once the scheduler acquires knowledge of this, it takes into
account the data generated by the work and publishes new events to the expert system
in order to activate new works. The work status then becomes �nished. The execution
of the work�ow ends when one of conditions below is met: a component failed, a service
terminated on an error or has thrown an exception and the event stop is generated or
there is no more rule waiting to be activated.

The scheduler is executing two main operations sequentially. First, it checks for work
ready for execution. This is done each time a new event/fact is introduced in the expert
system. This leads to the submission of jobs to the back-end. The second operation
is the monitoring of the work currently being executed. Once works have started their
execution, the scheduler of the application regularly checks if new works have entered the
�nished state.

The scheduler interacts with the back-end layer through the data repository and back-
end components. Every time a work status changed to ready, the scheduler prepares the
execution of a service by creating a script describing the work. This script is processed
by the worker component of the back-end layer. In the mean time, the work channels are
stored in an archive in order to be easily exchanged between the data repository and the
worker.

As we have seen in the previous section, an application �le contains an abstract work-
�ow in an alternate representation composed of facts and rules. This representation does
not contain any middleware speci�c information. As we have seen before, the compiler
does produce an application �le which relies solely on the information contained in the de-
velopment catalog. Concrete services are not available. The scheduler is also responsible
for the matching between abstract services used in application �le and concrete services
during the execution of the work�ow. This selection is at the time being straighforward.
However, it is already possible to implement intelligent selection strategies for the selection
of the concrete services used.

6.4 Conclusion

YML is built around the service integrations layer and the kernel layer. The service
integration layer de�nes the mechanisms needed to register services to be used within
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work�ow processes. This is possible thanks to the use of two independent catalogs which
store information used on the one hand for the development of work�ow processes and on
the other hand for their execution. These catalogs are the interface between the service
integration layer and the kernel layer.

Services represent computation on middleware peers. YML de�nes several classes of
services known as abstract, graph, concrete and built-ins. The �rst is used to describe
how services interact with each other. The last ones are used to describe service actions
themselves. In order to compose scienti�c work�ows related to numerical applications,
YML integrates the LAKe library which is used for the creation of iterative and hybrid
linear algebra methods for the solving of large problems. This integration is the �rst step
toward the integration of general purpose libraries such as BLAS and LAPACK.

Services are associated with each other in work�ow processes. The work�ow process
de�nition language of YML is used to describe the control �ow of the application. Unlike
many data �ow oriented work�ow environments, YML focuses on control �ow and deduces
automatically control �ow. The language allows the de�nition of general oriented graphs.
The synchronization of work between activities is done either implicitly following the
work�ow process language or explicitly by using the notion of event. This notion is
critical in YML and has directly in�uenced the work�ow scheduler. Indeed, the scheduler
component uses an arti�cial intelligence technique known as expert systems to drive the
execution of the work�ow.

The compilation of the work�ow process is done by a component which statically
expands all the nodes of the graph before the execution of the wor�ow. The scheduler
use this internmediate form coupled with an expert system engine in order to resolve
dependencies among services executions and manage the execution of the entire process.
The scheduler depends on the back-end layer for the interaction with the underlying
middleware.

The kernel and service integration layers could be improved in several ways. Currently,
the service generator component available is di�cult to master because the end-users or
the service creator have no mechanism to preview the generated C/C++ code. The
generator can be used to generate a skeleton of services which is to be completed by
end-users. Future work could extend the currently available integration for a few number
of signi�cant libraries such as BLAS and LAPACK.

The work�ow management area could be enhanced by changing the internal represen-
tation of a work�ow process to an hybrid model which would allow at the same tinme
explicit event synchronization and runtime generation of the work�ow nodes. This would
enable the application graph to be generated and modi�ed during the execution of the
work�ow process application.

Appendix A contains more information on the creation of work�ow processes.
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Chapter 7

YML a priori evaluation

7.1 Introduction

The evaluation of an environment like YML is di�cult. The de�nition of a methodology
to evaluate programming environments or programming languages is lacking. In order to
compare work�ow languages, an evaluation strategy has been suggested in [166, 147, 108].
The suggested methodology consists in evaluating the patterns which can be expressed
using a work�ow language. These patterns are used to evaluate the capability of expressing
standard control �ow and data �ow constructions. The approach is targeted for visual
work�ow environments and does not apply to other ones.

The evaluation of YML begins with an analysis of how YML provides solutions to the
motivations discussed in 1.1.4. We �rst present aspects related to runtime environments
(middleware and peers) and then discuss the work�ow environment built on top of the
back-end layer. This constitutes an a priori evaluation as well as a conclusion to the
presentation of YML.

7.2 A priori evaluation

In 1.1.4, we highlighted several constraints related to the development of applications for
use on large scale distributed systems and especially meta-computing environments. The
aim of YML is to ease the development of parallel applications on this kind of system. To
achieve this goal YML must solve issues associated to peers, middleware, programming
language, and supporting tools.

7.2.1 Runtime environments

Large scale distributed systems introduce new issues compared to high performance sys-
tems. A high performance system with numerous processors distinguishes itself from a
meta-computing environment at several levels. These distinctions are mainly based on the
processing element. In a high performance system, the processing element is constituted
of one or several cores associated with some memory and a networking interface. However,
in a large scale distributed system, the processing element is most of the time a complete
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computer with its owner, hardware, operating system and runtime environment. It can
work on the owner applications and at the same time contribute to one or several mid-
dleware. These di�erences have a strong impact on a programming environment oriented
toward the use of large scale distributed systems. Indeed the programming environment
should provide mechanisms to deal with peer heterogeneity, peer volatility and security
for both the peer and the application.

7.2.1.1 Security

The security of both the peer and the application is one of the biggest issues. Thanks to
techniques such as sandbox and virtualization it is possible to enforce the security of the
peer. However, no practical method exists to certify that a result has been produced by
a speci�c application. This is a di�cult problem in the context of malicious peers. This
kind of problem happened in the project seti@home in the past. In order to ensure that
the results obtained are genuine, a possible solution consists in executing several times
the same computation on di�erent peers of the system. The results are then compared
and statistical methods are used to detect malicious peers.

From the very beginning, YML had never provided any mechanism to ensure security.
We considered security as one of the duties of the middleware. Indeed, YML expects
from the middleware the ability to execute an application. It means the YML worker
component is an application deployed and managed by the middleware and thus it is the
role of the middleware to ensure security of both parties. However, many middleware do
not enforce security at all. Thus, the YML worker ensures at least correct cleanup of the
�les created during the execution of the services. In the future, the worker could become
a sandbox for the execution of services and ensure at least the security of the peer.

7.2.1.2 Heterogeneity

The peers of a large scale distributed system are most of the time heterogeneous. This
aspect is di�cult to handle completely in a satisfying way. Indeed, there are several
problems to solve. The �rst constraint is introduced by the re-usability of libraries, and
especially numerical libraries. For the latter, the use of interpreted languages such as
JAVA, Ruby or Python is just impossible. Indeed, numerical libraries are written using
languages such as C or Fortran for the sake of e�ciency. In order to use them, applications
need to be written either in a language which allows the usage of those libraries or provides
a binding (or glue). In both cases it means the execution of native, compiled code on the
peer. Services must be able to make use of routines written in C or Fortran. Thus services
are dependent on the operating system as well as the hardware. Assuming services are
written using a compiled language which leads to a binary application directly usable
by peers, we have no choice but to provide several versions of the service depending
on the runtime environment of the peer. This can be achieved by several mechanisms.
The �rst solution consists in de�ning a set of peers which are responsible for generating
versions of the services. Each version matches one supported runtime environment. The
second solution relies on the use of a cross-compilation environment. The component
generator creates services which are runtime independent at the source level. This allows
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the component generator to create multiple binary applications from a single service
de�nition.

The �rst solution is much more representative of the idea of distributed middleware.
However, having peers used to generate applications for a group of peers is really di�cult
to use in practice due to the lack of a common set of libraries on the many available
runtime environments. It also introduces more issues related to the certi�cation of the
binary application. This approach would require a mechanism proving that the binary
application is genuine. The second approach is less di�cult in practice and is often used
to generate applications for high performance computers. In this context, a dedicated
computer is commonly used on high performance systems to prevent the consumption of
CPU cycles just for the compilation of applications. In the context of YML, the second
solution is the one which is most easily realized, as it only needs works to settle the cross-
compiling environment for the various operating systems/hardware of the targeted peers.
Lastly, a novel approach in that regard consists in using virtualization/emulation in order
to deploy an homogeneous environment. This approach is promising for future peer to
peer and grid environments. It also enhances signi�cantly the control given to the owner
of a resource as well as the security of the peer and the application.

7.2.1.3 Volatility

Peers in large scale distributed systems are volatile. It means that peers can enter or leave
the middleware at anytime. In YML, we consider only the failure of the peers involved in
the computation of work�ow services. As the behavior of middleware di�ers signi�cantly
with regard to fault tolerance, YML work�ow contains many restarting points. Indeed,
each service can be executed over and over until its execution is successful. The YML
kernel and its scheduler component assume that the service execution is completed when
it receives a noti�cation. The fault tolerance mechanism can then be implemented either
in the middleware if present or at the the back-end level by simply rescheduling the job to
a new peer. However this solution does not work perfectly for all environments. Indeed a
system like OmniRPC does not support the loss of a peer involved in the system.

The introduction of the back-end manager creates another level of fault tolerance to
the system. Indeed, it allows each back-end to be disconnected completely from the system
preventing permanently or temporally YML to access a complete middleware. Pending
service executions are dispatched to the remaining back-ends if any or queued until new
back-ends contact the back-end manager.

Security, Heterogeneity and volatility constitute the three aspects that must be dis-
cussed concerning peers involved in the execution of YML work�ows. The next issues
concern middleware. Although middleware are converging, they are still far from being
interoperable. Most of them are designed to solve the problem of a particular community
of users. These di�erences lead to many solutions dedicated to a particular usage pattern.
Most of the issues related to the use of large scale distributed middleware are associated
to this problem.
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7.2.1.4 Multi-middleware

YML is a client of middleware. In that respect, it does not require any modi�cation of
middleware. It is thus simple to add new middleware. The support for a new middleware
only requires the creation of a worker and the ability to request the execution of the YML
worker on a peer. This is the case of most known middleware. With the introduction
of libraries such as DRMAA, the writing of new back-ends is simpli�ed signi�cantly and
grants access to many environments at once. One aspect of the integration that could be
improved is the data repository component which is discussed later in this section.

7.2.1.5 Middleware interoperability

YML provides interoperability among middleware at several levels. First the services
composing a work�ow are shared among middleware. The YML worker allows this by
providing a consistent environment for service execution on all supported middleware.
Secondly, the application once compiled can be executed multiple times on di�erent mid-
dleware just by changing the con�guration of YML. Finally, the execution of a work�ow
process can use peers provided by multiple middleware at the same time.

7.2.1.6 Data exchanges

The data repository component is used for all communication in YML. It is used to
communicate between the YML scheduler executing an application and the peer of the
middleware. At the time being, we assume that at least one peer can be contacted by any
other peers of the system. This peer is used to host the data repository component used
in all data exchanges between the YML scheduler and the service executed on remote
peers. Currently, this part of the system is not distributed. It is thus at the same
time a bottleneck and a limitation to the integration within targeted systems. Indeed,
middleware can de�ne a private network which is used to exchange data between peers.
However, peers might only be able to communicate with each other through mechanisms
provided by the middleware. With such middleware, YML is currently not able to do any
communication. A solution to this problem is to use a mechanism similar to the back-end
manager for data repositories. This aspect is required to improve the performance of YML
and the performance related to data management. This will also allow us to implement
techniques such as data replication or peer to peer data transfers.

The middleware integration and interoperability are two solutions we adopted to ease
signi�cantly the use of several large scale distributed systems. YML enables the de�nition
of an application to be made middleware independent not only through back-end compo-
nents, but also thanks to a work�ow description language used to de�ne applications.

7.2.2 Language and toolset

In order to ease the exploitation of large scale distributed systems for end-users, a uniform
runtime environment is not enough. In the remainder of this section, we discuss the aspects
related to the YML language used to describe applications as well as the tools to support
end-users. All these aspects are related to the higher layers of YML.
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YML is organized around a work�ow process de�nition language. It is used to express
the control �ow of the application. The use of a work�ow oriented environment introduces
several constraints to the end-users. First, the user must de�ne its application as a
collection of independent services. Independent services are connected to each other using
a work�ow process. Work�ow processes can then be combined in order to create more
complex applications.

7.2.2.1 Services

Nowadays practices in software development and engineering promote software archi-
tecture which leads to a decomposition of an application into independent components.
Moreover, they promote a separation between the component interface and its realization
in order to decrease the coupling between two components of an application on the �rst
hand and to allow an application to change the behavior of one or several of its compo-
nents independently of their implementation. This methodology has been used during
the design of YML. The work�ow environment also enforces this programming practice
during the development of end-users applications.

The notion of abstract/concrete services highlights that an abstract service with a
given interface can lead to several concrete implementations. The execution catalog of
YML provides a mechanism to select at runtime the best available realization of an ab-
stract service. We did not highlight this aspect in the previous chapters because we still
need to develop some advance policy to match an abstract service to concrete services.
Nevertheless, it is already possible to adapt the execution catalog component implemen-
tation provided with YML to take into account several selection criteria such as peer
architectures6, data size, complexity of the implementation, patterns availability, etc.
The introduction of new realization of a service does not lead to a rede�nition of the
application work�ow process or of other components.

The separation between abstract/concrete services allows services to be written in
di�erent programming languages. The language used to implement services is important.
Indeed, one of the goals of YML is to allow the reuse of existing libraries and especially
numerical ones. These libraries are mostly written using an imperative language such as
C or Fortran. They need to be compiled into an architecture dependent representation
called a binary application. This is one of the major problems of these languages in the
context of heterogeneous environments. This has been discussed in the previous section.
It introduces a complexity in the environment in order to handle all systems. The writing
of services is also more di�cult because of the di�erences which exist between systems.
However, it is also an interesting property of large scale distributed systems. Indeed, the
heterogeneity of �oating point computing units often bene�ts to numerical applications
and especially hybrid methods.

The notion of abstract/concrete services eases signi�cantly the de�nition of concrete
services. Indeed, abstract service de�nitions are used to generate a skeleton of the concrete
service. The user does not have to manage the serialization of the data and more generally
all input/output operations are hidden to the user. The communication between services

6Example of criteria: availability of graphic processing unit, amount of memory, number of processors
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involved in a work�ow process is transparent to the user.

7.2.2.2 Processes description language

In 2.2.2, we have presented the criteria used to describe the parallel programming models.
We discussed both the data parallel model and the task parallel model. These models
can be compared based on whether they implicitly or explicitly allow the user to express
concurrency, synchronization, data distribution and communication. YML manages data
distribution and communication for the user. Concurrency and synchronization must be
expressed explicitly. The �rst two criteria are strongly coupled with the control �ow while
the last two are mostly associated to data �ow of an application. YML detects the data
�ow based on the analysis of the control �ow and thus hides this aspect to the end-user.

Many work�ow process de�nition languages exist. Most often, they make an extensive
use of XML. The advantage of this language is that it simpli�es the communication
between applications. However, it is really verbose and is not adapted to the creation of
large documents manually. YML chooses a more compact syntax similar to C or pascal
in order to allow the creation of work�ow processes directly.

This language is dedicated to regular applications which make heavy use of multi-
dimensional arrays. This is well adapted for numerical applications which often rely on
the manipulation of large matrices. Large matrices are often decomposed in blocks. The
decomposition of a matrix in blocks determines the granularity of the application. The
work�ow process of the applications as we will see in the next chapter only depends
on the decomposition which can be part of the work�ow process or executed before as
a pre-processing step. The work�ow process adapts itself when the decomposition of
the matrix changes. Moreover, the work�ow process can be shared between applications
whose control �ows are identical. It promotes generic programming. It behaves similarly
to an application template. The concrete services used determine what is really computed
by the work�ow process.

In order to e�ciently exploit large scale distributed systems, two aspects are really
important. The environment/language should provide mechanisms to allow out of core
computations on the one hand and data persistence on the other hand. The �rst aspect
is fully supported in YML and is transparent to the user. However, data persistence is
not yet possible because of the requirements we speci�ed on middleware. Indeed, in order
to be able to realize e�ciently data persistence, we need to express a�nity between work
and data. However, in many middleware we cannot specify which is the resource to use to
execute a work. Thus data persistence is meaningless. Despite this constraint, on going
work to increase the performance of YML consists in adding some caching mechanism to
the worker. This will be used to provide an automatic data persistence mechanism.

7.2.2.3 Extensibility and future evolution

YML was speci�ed with numerical application as the main application domain. However,
it is not limited to this domain. The language can be extended by integrating existing
libraries, which often leads to the de�nition of user de�ned data types. It is also possible to
register new functions to create the work�ow processes. These functions are used during
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the compilation of a work�ow process and are organized in packages.
The integration of existing libraries often requires the de�nition of user data types. For

example, the LAKe library introduces two abstract data types for representing dense and
sparse matrices. These data types consist mainly in wrappers around the classes provided
by the LAKe library. The code generator component requires that all type de�nitions
provide two functions used for the conversion from and to a byte stream. The integration
of LAKe also introduces a set of abstract and concrete services which can be used in many
work�ow processes.

The image application presented in 8.2.2 used images stored in png. These images can
be read and written using the open source library libpng.The aim of this library is not
image processing. It focuses on both the reading and writing of images stored according
to the png speci�cation. In order to allow the creation of image processing applications,
we de�ned a data type for image manipulation. An image basically consists in a two
dimensional array of pixels. The libpng library is used for the conversion of image data
into a stream of bytes. However, the libpng library does not lead to the de�nition of any
abstract or concrete services. These two examples illustrate the extension of YML by the
integration of existing libraries. It leads to the de�nition of new data types which can
be used in the de�nition of work�ow processes and services. It also often leads to the
de�nition of a collection of abstract, graph and concrete services.

The last mechanism used to adapt YML to new application domains is function pack-
age. A function package contains a set of functions which can be used by the YML
compiler during the compilation of the work�ow process de�nition. These functions are
grouped in packages which are loaded dynamically when needed. These functions can then
be used to compute indices or constant values involved in the service calls. YML de�nes
two default function packages which contain basic operators supported by the language
and some mathematical functions such as log, power or square.

From the beginning of the project, we designed YML with the integration of existing
software in mind. We were also interested in being able to extend YML with new data
types. In order to do this we decided not to depend on a mechanism based on XML such
as the one used in XML-RPC, or web services. XML base communication was not chosen
because of the verbosity of the language. However, it might be used in future and this
area needs to be investigated. A more realistic approach consists in providing an XML
description of the data format which can be used by code generators to interpret the
content of a �le. Jointly to this approach, data will probably be extended with meta data
in the future in order to be able to use data properties in the work�ow process de�nition
as well as the dynamic selection of concrete services during the execution of work�ow
processes.

In order to enlarge the scope of applications, the YML work�ow process de�nition
language can be extended without modi�cation of the other components of YML. A
possible extension consists in creating other parallel loops which do not generate any
implicit synchronization at the end of their execution. Another possible evolution is the
introduction of exception mechanisms. The processing of exceptions can be translated
into rules as well. However, in order to support exceptions in a way similar to other
languages, we need to slightly adapt the scheduler. The exception mechanism implies
a rollback mechanism which is not yet supported by the scheduler component. The
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services are already able to generate exceptions. They are treated mostly like errors by
the scheduler.

7.3 Conclusion

YML provides a solution to most of the problems presented in the motivations. In or-
der to ease the development of applications for our targeted runtime environment, we
designed a work�ow environment. This environment hides the complexity of writing a
parallel application by two main mechanisms. Firstly, YML provides an abstraction of
the runtime environment which allows a YML work�ow process to be deployed and exe-
cuted on di�erent middleware. It is also possible to spread the execution of one work�ow
process on multiple middleware at the same time. Secondly, YML de�nes an application
as a collection of abstract/concrete services. These services interactions are de�ned by a
simple language designed to express parallelism and synchronization. Many aspects are
hidden to the end-user and handled automatically by the work�ow management software.
The ease of development is possible thanks to an increased level of abstraction.

Being a high level approach to the development of parallel and distributed applica-
tions, YML hides aspects of a parallel application such as volatility, heterogeneity, data
management and communication. Heterogeneity needs further improvements in order to
become one of the main assets of YML. Indeed, in a large scale distributed environment,
heterogeneity is at the same time a complexity for the user and a chance. Environments
which are able to bene�t from the diversity of resources are still not well spread and do
not solve all the problems related to the development of work�ow process services. The
separation between abstract and concrete services is a �rst step. In order to improve the
capabilities of YML to deal with heterogeneity of peers, the next step is the dynamic
selection of concrete services based on peers characteristics.
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Applications

8.1 Introduction

In order to evaluate practically YML, we present and discuss four applications issued
from three domains. The �rst application sorts large data sets divided into chunks of
data. One of the characteristics of the method used is the limited memory usage. Indeed,
the application can sort arbitrary amounts of data by increasing the number of blocks. In
order to work in a distributed environment, we needed an algorithm to manipulate a �xed
quantity of memory easily evaluated before starting the application. Algorithms such as
the quick sort for example do not respect this property. We also wanted an algorithm
which uses resources in the most uniform way possible. The amount of parallel jobs,
number of peers, memory, and network usage is constant during the sorting stage.

Then we selected the synthesis of images from a three dimensional scene description.
This application produces large images in a distributed fashion and applies post-processing
�ltering operations on the results. The application is built upon a ray-tracer, named
RayShade, used to create a wall of images. Ray tracing techniques most often rely on
Monte Carlo sampling of all pixels composing the resulting image. All samples are based
on the casting of rays which correspond to the path followed by the light. The ray tracer
is coupled with a �ltering operation which can be used to transform the wall of images
using e�ects such as gaussian-blur or edge detection.

The initial goal of YML is to ease the creation of numerical applications and especially
linear algebra ones on large scale distributed systems. The last applications presented are
used in the resolution of linear algebra problems such as linear systems and eigenproblems.
We �rst present the matrix vector product. This operation is used in many numerical
applications and thus is particularly signi�cant in our context. It is also the basis of most
projection methods used to create a Krylov subspace.

Lastly we discuss an hybrid method called MERAM which solves eigenproblems for
large sparse non-Hermitian matrices. This application is often used in applications in-
cluding numerical simulations, Google search engine, and many other �elds. MERAM
is constituted of several asynchronous co-methods called ERAM which exchange inter-
mediate results to decrease the number of iterations required to �nd a few number of
eigenelements.

87
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All applications are presented following the same outline. Each application description
begins with a short description. It is followed by a list of the parameters and services. The
work�ow process is then described either as a source code or using a visual representation
of it.

8.2 Non numerical applications

8.2.1 Distributed sort algorithm

8.2.1.1 Overview

This application presents a distributed sorting of a large dataset. The dataset is composed
of integers stored in blocks of a �xed size. The application relies mostly on an operation
we called merge. This operation takes two blocks of ai and aj and creates two new blocks
a′i and a′j of the same sizes. The elements of block a′i are all smaller than elements of block
a′j. All outputs blocks are also sorted. The sort algorithm is described by algorithm 1.

Algorithme 1 : Distributed Sort

INPUTS: {a1, a2, . . . , an} N unsorted blocks of K integer values.
OUTPUTS: {a1, a2, . . . , an} N sorted blocks of K integer values.
for i in 1, N in parallel do

DSortBlock(INPUTS: ai OUTPUTS: ai)
for iter in 1, N − 1 do

inc← 1 + iter mod 2
for i in 0, N/2− 1 in parallel do

block1← 1 + (inc + 2 ∗ i) mod N
block2← 1 + (inc + 2 ∗ i + 1) mod N
min← min(block1, block2)
max← max(block1, block2)
DSortMerge(INPUTS: amin, amax OUTPUTS: amin, amax)

This algorithm is not optimal nor is it the most e�cient however it is interesting
in the context of large scale distributed systems. Indeed, the number of operations of
the merging and the memory consumption is identical for any couple of blocks. It is
easy to determine a block size which is adequate for the peers composing the runtime
environment. This is not the case with more e�cient algorithms such as quick sort.
Moreover, the number of parallel tasks is also identical during all steps of the sort. This
algorithm is thus interesting for the environment we trigger.

8.2.1.2 Parameters

The application de�nes the two parameters:
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• blockSize de�nes the number of integers contained in a each block.

• blockCount de�nes the number of blocks of blockSize integers. The size of the
collection to sort is obtained by multiplying blockSize by blockCount. This
parameter also determines the number of parallel operations which compose its
iteration of the algorithm.

8.2.1.3 Services

The application de�nes three services:

• Generator: Create a block of the collection composed of random integers.

• Sort: Sort the elements contained in a single block. This is only needed after the
generation of a block because the merging operation expects input blocks to be
sorted.

• Merge: Merge two blocks as described before. The two blocks are merged so that
the smallest elements are in the �rst resulting block and the largest elements �t in
the second resulting block. The number remains sorted in both blocks.

8.2.1.4 Work�ow process

Figure 8.1 is a visual representation of the work�ow of the application using N = 4 blocks.
The corresponding work�ow process de�nition is presented in listing 8.1. The work�ow
process contains two di�erent parallel sections. The �rst section consists in generating
the collection of integers. The second parallel section realizes the sorting algorithm.

<?xml version=" 1 .0 " ?>
<app l i c a t i on name="DSORT" >

<de s c r i p t i o n>
This graph i s used to show the s o r t i n g proce s s at runtime and

keep an h i s t o r y o f b locks .
I t takes a huge space on d i s c f o r l a r g e block . Use i t with

care

</ d e s c r i p t i o n>
<params>

<param name=" b lo ckS i z e " type=" i n t e g e r " mode=" in " d e s c r i p t i o n="Set
 the  s i z e  pf  b locks " />

</params>
<graph>
# Change t h i s var to a power o f two
# I t corresponds to the number o f b locks o f data to handle
# The graph w i l l be made o f blockCount − 1 p a r a l l e l f r on t o f
# n / 2 block ope ra t i on s
blockCount := 32 ;
par

par ( i := 1 ; blockCount )
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do
compute DSortGenerator ( b lock [ i ] [ 0 ] , b lockS ize , 256 . 0 ) ;
compute DSortSort ( b lock [ i ] [ 0 ] ) ;
n o t i f y ( evtBlock [ i ] [ 0 ] ) ;

enddo
//

par ( i := 1 ; blockCount − 1)
do

inc := 1 + ( i % 2) ;
par ( j := 0 ; blockCount / 2 − 1)
do

block1 := ( inc + 2∗ j ) % blockCount ;
b lock2 := ( inc + 2∗ j + 1 ) % blockCount ;
i f ( b lock1 gt block2 )
then

f i n a lB l o ck1 := 1 + block2 ;
f i n a lB l o ck2 := 1 + block1 ;

e l s e
f i n a lB l o ck1 := 1 + block1 ;
f i n a lB l o ck2 := 1 + block2 ;

end i f
wait ( evtBlock [ f i n a lB l o ck1 ] [ i − 1 ] and evtBlock [ f i n a lB l o ck2 ] [ i −

1 ] ) ;
compute DSortMerge ( b lock [ f i n a lB l o ck1 ] [ i ] ,

b lock [ f i n a lB l o ck2 ] [ i ] ,
b lock [ f i n a lB l o ck1 ] [ i − 1 ] ,
b lock [ f i n a lB l o ck2 ] [ i − 1 ] ) ;

n o t i f y ( evtBlock [ f i n a lB l o ck1 ] [ i ] , evtBlock [ f i n a lB l o ck2 ] [ i ] ) ;
enddo

enddo
endpar
</graph>
</ app l i c a t i o n>

Listing 8.1: Distributed sort work�ow process de�nition

Additional resource used in this application is presented in appendix A.1.1.

8.2.2 Image synthesis and post-�ltering

8.2.2.1 Overview

Rendering is the process of generating an image from a model, by means of a computer
program. The model is a description of three dimensional objects often named the scene.
The scene contains geometry, viewpoint, texture, lighting, and shading information. For
movie animations, several images (frames) must be rendered, and stitched together in
a program capable of making an animation of this sort. On the inside, a renderer is
based on a selective mixture of disciplines related to light physics, visual perception and
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Figure 8.1: Distributed Sort: Application graph

mathematics.

The rendering of a scene can be achieved by several techniques such as scanline render-
ing and rasterisation, ray casting, radiosity and ray tracing. Ray-tracing is an extension
of both scanline and ray casting. It is almost always a Monte Carlo technique, based on
averaging a number of randomly generated samples from a model. In this case, the sam-
ples are imaginary rays of light intersecting the viewpoint from the objects in the scene.
It is primarily bene�cial where complex and accurate rendering of shadows, refraction or
re�ection are issues.

In order to produce a two dimensional image from a scene, the rendering consists in
computing the color of the light which hits the camera. For each pixel in the resulting
image, a ray-tracer tries to compute as accurately as possible the color of the light. This
process is time consuming and can be really complex as it consists in casting many rays
for each pixel. This is also called physical based rendering. Each pixel can be processed
independently, which leads to trivial parallelism. Indeed, it is possible to distribute the
rendering of a scene to several computers each working on distinct parts of the image.
Most ray-tracers are able to render only a selected window of the complete image and
many distributed rendering solutions rely on this. The distributed generation of an image
or of the frame composing an animation has been used as a benchmark for several global
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computing or task farming solutions.
A post-processing stage applies a transformation to the pixels composing an image.

Indeed an image is often represented as a two dimensional array of pixels. Each pixel
is represented as a set of components which represent the amount of red, green, blue
composing the color. We de�ne a post-processing stage as an operation which applies
to the totality of an image generated in a distributed way. However, we apply the post-
processing without aggregating all windows composing an image. Examples of post-
processing operations are regular image transformations such as re-sampling, blur, edge
detection or image information extraction.

The post-processing of an image is an operation which transforms an image according
to a �lter. This can be used to enhance the quality of an image or to apply e�ects such
as a wave, blur, edge detection e�ects. This kind of e�ect can be obtained by applying a
�lter to each pixel of an image. The general form of the execution of a �lter on an image
is described in algorithm 2.

Algorithme 2 : Image �ltering algorithm

INPUTS: I an image of size w × h pixels, filter the �ltering function.
OUTPUTS: I ′ the resulting image of size w,h.
for i ∈ 1, w in parallel do
for j ∈ 1, h in parallel do

I ′[i][j]← filter(I, i, j);

The de�nition of filter varies depending of the �lter used. The function filter is
applied to each pixel of the source image and generates one pixel of the resulting image.
As a consequence, each pixel can be processed independently. However, most �lters require
the knowledge of the surrounding pixels. Several �lters can be represented as a square
matrix of coe�cient of size 2n+1. The coe�cient represents the contribution of the pixel
associated to the coe�cient to the new pixel value. For example, a gaussian blur e�ect
is obtained by computing the average of the surrounding pixel values multiplied by the
coe�cient in the matrix. Figure 8.2 contains an example of a matrix 5× 5 for a gaussian
blur �lter.

1 2 4 2 1
2 4 8 4 2
4 8 16 8 4
2 4 8 4 2
1 2 4 2 1

Figure 8.2: Gaussian blur �lter

Our application consists in the distributed synthesis of an image and the execution of
a sequence of �lters. This without manipulating the whole image during the execution of
the work�ow. We currently use a gaussian blur �lter for each step of the post-processing.
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This application makes use of the rayshade library. This library which provides the
ray-tracing facility is out of the scope of our traditional studies or area of expertise and we
do not have a deep knowledge of its behavior. In that respect, the ray-tracer is considered
as a black box. This is an example of integration of an external software for which we
have no knowledge at all. This is di�erent from the other three applications which can
be considered from our point of view as white box integration.

8.2.2.2 Parameters

The application de�nes the following parameters:

• Scene: The most important parameter of the application is the scene. It is an
archive which contains one or several �les to be processed by the ray tracing service.

• blockWidth/blockHeight: They de�ne the size of a block or window of the �nal
image. Each block is generated by one instance of the ray-tracing component during
the generation stage.

• blockCount: This parameter de�nes the number of blocks composing the �nal im-
age. The complete image size is blockCount×blockWidth, blockCount×blockHeight
pixels.

• �lterStage: It is used to specify the number of �ltering stages to apply to the
image. For our experiments, we simulate a pipeline of �ltering operations.

• �lters: One or several square matrices to apply at di�erent stages of the post-
�ltering. A �lter is represented by a square matrix which corresponds to coe�cients
to apply to color components of the image.

8.2.2.3 Services

The application de�nes two services:

• rayshade: ray-tracer service used to produce a two dimensional image. It takes
a scene as input as well as the expected image size and the window to render and
produce a two dimensional array corresponding to the window stored using the PNG
image format.

• �lter: apply a �lter to a block and generate the transformed block. In order to
apply a global transformation the �lter also needs the neighborhood of the block
being processed.

8.2.2.4 Work�ow process

The work�ow process is like previously composed of two stages. The �rst stage represented
in the �rst and second parallel sections is responsible for the generation of the image based
on the scene description. The image is composed of a square two-dimensional array of
images also called windows. Each window is stored as a valid PNG image. During the
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generation process we also notify explicitly events for an additional border around the
generated image. This is used to simplify the post-processing description which is given
in the last parallel section. The post-processing is composed of filterIteration operations
executed sequentially. However the parallelism expressed by the work�ow allows a post-
processing operation to start before the end of the previous one. This is possible due to
the use of explicit synchronization mechanism based on the use of notify and wait.

<?xml version=" 1 .0 "?>
<app l i c a t i on name="Image">

<de s c r i p t i o n>
Image f i l t e r i n g app l i c a t i on

</ d e s c r i p t i o n>
<params>

<param name=" r e s u l t " type="PNGImage" mode="out"
c o l l e c t i o n="yes "/>

<param name=" scene " type="ZIPArchive" mode=" in "
c o l l e c t i o n="no" />

<param name=" b lo ckS i z e " type=" i n t e g e r " mode=" in "
c o l l e c t i o n="no" />

<param name=" f i l t e r " type="RealMatrix " mode=" in "
c o l l e c t i o n="no" />

</params>
<graph>

##############################################################
# Change t h i s to i n c r e a s e / dec r ea se the number o f b locks o f the
# image
blockCount := 10 ;
# Number o f f i l t e r i n g i t e r a t i o n s
f i l t e r I t e r a t i o n := 4 ;
##############################################################
# No change needed s t a r t i n g from here #
##############################################################
par
# Prepare events f o r miss ing block at the border
# I t i s b e t t e r to generate a l l those events once f o r a l l
par

( k := 0 ; f i l t e r I t e r a t i o n )
do

# Generate border b locks events
par

par ( i := 0 ; blockCount + 1)
do

# Border l i n e s
par

no t i f y ( evtBlock [ i ] [ 0 ] [ k ] ) ;
//

no t i f y ( evtBlock [ i ] [ blockCount + 1 ] [ k ] ) ;
endpar
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enddo
//

par ( j := 1 ; blockCount )
do

# Border Columns
par

no t i f y ( evtBlock [ 0 ] [ j ] [ k ] ) ;
//

no t i f y ( evtBlock [ blockCount + 1 ] [ j ] [ k ] ) ;
endpar

enddo
endpar

enddo
//

# Generate the i n i t i a l image
par ( i := 1 ; blockCount ) ( j := 1 ; blockCount )
do

compute ImageRayshade ( r e s u l t [ i ] [ j ] [ 0 ] , scene ,
blockCount , blockCount ,
b lockS ize , b lockS ize ,
i − 1 , j − 1) ;

n o t i f y ( evtBlock [ i ] [ j ] [ 0 ] ) ;
enddo

//
# Star t f i l t e r i n g s tage
par (k := 1 ; f i l t e r I t e r a t i o n )

( i := 1 ; blockCount ) ( j := 1 ; blockCount )
do

# wait f o r b locks around o f ( i : j )
wait ( evtBlock [ i − 1 ] [ j − 1 ] [ k − 1 ] ) ;
wait ( evtBlock [ i − 1 ] [ j ] [ k − 1 ] ) ;
wait ( evtBlock [ i − 1 ] [ j + 1 ] [ k − 1 ] ) ;
wait ( evtBlock [ i ] [ j − 1 ] [ k − 1 ] ) ;
wait ( evtBlock [ i ] [ j ] [ k − 1 ] ) ;
wait ( evtBlock [ i ] [ j + 1 ] [ k − 1 ] ) ;
wait ( evtBlock [ i + 1 ] [ j − 1 ] [ k − 1 ] ) ;
wait ( evtBlock [ i + 1 ] [ j ] [ k − 1 ] ) ;
wait ( evtBlock [ i + 1 ] [ j + 1 ] [ k − 1 ] ) ;
compute ImageF i l t e r (

r e s u l t [ i ] [ j ] [ k ] , r e s u l t [ i ] [ j ] [ k − 1 ] ,
r e s u l t [ i − 1 ] [ j ] [ k − 1 ] , r e s u l t [ i − 1 ] [ j − 1 ] [ k − 1 ] ,
r e s u l t [ i ] [ j − 1 ] [ k − 1 ] , r e s u l t [ i + 1 ] [ j − 1 ] [ k − 1 ] ,
r e s u l t [ i + 1 ] [ j ] [ k − 1 ] , r e s u l t [ i + 1 ] [ j + 1 ] [ k − 1 ] ,
r e s u l t [ i ] [ j + 1 ] [ k − 1 ] , r e s u l t [ i − 1 ] [ j + 1 ] [ k − 1 ] ,
f i l t e r ) ;

n o t i f y ( evtBlock [ i ] [ j ] [ k ] ) ;
enddo
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endpar
</graph>

</ app l i c a t i o n>

Listing 8.2: Image processing work�ow process

Additional resources of this application are presented in appendix A.1.2.

8.3 Numerical applications

Linear algebra methods are used in many applicative contexts. Linear algebra applications
often lead to the solving of either a linear system or an eigenvalues/vectors problem:

• solving of a linear system Ax = b where b and x are two vectors of size n and A is
a matrix of order n× n.

A ∈ Rn×n (or Cn×n)
x ∈ Rn (or Cn)
b ∈ Rn (or Cn)

• �nding the eigenvalues(λ) and eigenvectors(u) of a matrix A which are solution of
Au = λu.

A ∈ Rn×n (or Cn×n)
u ∈ Rn (or Cn)
λ ∈ R (or C)

We distinguish two kinds of resolution methods for these problems. Direct methods
compute the solution in a �xed number of operations. However, iterative methods com-
pute the solution in a potentially in�nite number of operations. For each class of problem,
direct and indirect methods exist. Both kinds have bene�ts and drawbacks depending on
the characteristics of the problem to solve and of the runtime environment.

The matrix A which is the de�nition of the problem for the two major linear algebra
applications can be stored using a large variety of representations. The simplest represen-
tation is dense matrices. In this storage scheme, all elements of the matrix are explicitly
represented. This storage is not e�cient for problems where the number of null elements
is important. Many compressed schemes exist for representing matrices composed of a
large number of null elements. Matrices compressed by removing null elements are known
as sparse matrices.

Direct methods are most suited for linear algebra problems represented using dense
matrices. They often transform matrices they operate on. Examples of those methods are
Gauss-Jordan and block Gauss-Jordan[129] methods used to solve linear systems. They
compute the solution by applying Gauss pivoting operations on the matrices A and A−1

which are built during the resolution. The e�ect of the Gauss elimination is the creation
of new not null elements in A. This algorithm is thus inadequate for sparse matrices and
really large problems. An evaluation of the block Gauss-Jordan method using YML is
given in [101].
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Iterative methods are on the opposite well adapted for computation on sparse matrices.
They do not transform the initial matrix representing the problem. In order to produce
a result, iterative methods are stopped once the solution computed meets a user de�ned
accuracy criterion or when a limit on the number of operations executed is reached. Figure
8.3 represents the control �ow of all iterative methods.

Figure 8.3: Iterative method control �ow

Each iterative method can be decomposed in four computing steps. The initialization
creates the initial guess of the methods. Its goal is to create a data set I0 used to feed the
�rst iteration of the method. The Iteration computation processes the data provided by
the initialization or the last iteration and creates the solution Ri of the current iteration.
The third step evaluates the accuracy of Ri. This information is compared to the user
de�ned tolerance. If the accuracy is greater than the tolerance then the method needs to
be restarted by applying a restarting strategy. This step creates Ii which is going to be
used as the initial guess for the next iteration.

The eigenvalue problem is an old and well known problem. As it is used in numerous
scienti�c and industrial applications, it is studied a lot [169]. Most applications are not
interested in computing all the solutions to this problem. Only the eigenvalues of greater
or smaller modules are generally of interest. The rest of this section introduces some of
the methods used to extract these eigenvalues.
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One of the most commonly used methods is QR. This method computes the solution
of all the eigenvalues and eigenvectors of a matrix A ∈ Rn×n. The complexity of this
method is O(n3) if the matrix is symmetric or O(n4) for asymmetric matrices. It is not
adapted to large problems. Projection methods such as Arnoldi are used when the size of
A increases.

A projection method translates a big problem into a small one which contains the
eigenvalues of A. The projected problem contains the solution of the initial one. The
projection method constructs two information: a basis of the subspace and a Hessemberg
matrix. A derivative of the power method generates a set of vectors which together de�ne
the basis of a Krylov subspace. Krylov suggested the use of the vectors x, Ax,A2x, . . . , Anx
generated by the power method as the foundation of all Krylov subspaces. The Lanczos
and Arnoldi projection enhance the stability of the Krylov basis by ensuring orthogonality
of the basis during its construction. Lanczos projection is used for symmetric matrices
while Arnoldi projection is used for non-Hermitian ones.

The aim of an hybrid method is to speed up the convergence time of an iterative
method. The idea is to couple synchronously or asynchronously several co-methods in
order to decrease the number of iterations required to compute the solution. A special form
of hybrid methods is called multi methods. Figure 8.4 represents an hybrid method. The
�gure highlights the collaboration pattern used between two methods. Other collaboration
patterns exist when co-methods are used to speed-up only parts of the iterative methods.
Most of the time co-methods exchange their results at the end of each iteration and this
information is taken into account during the execution of the restarting strategy.

A multi method is a hybrid method composed of several instances of the same iterative
method coupled to work on the same problem. Each instance is given a di�erent set of
initial parameters. At the end of each iteration, each iterative process exchanges its results
with the other co-methods. The restarting strategy uses all the information available at
that time to compute the initial guess for the next iteration.

Hybrid methods and especially multi methods are interesting in the context of dis-
tributed environment. One of the main interests of these methods is asynchronicity.
Indeed, if the results of the other methods are not available, it is still possible to continue
the computation. At the same time asynchronus methods are also interesting because
they provide built-in fault tolerance. As long as one of the co-methods is still running,
the application will generate a result. Lastly, these methods can improve the convergence
speed thanks to the heterogeneity of processors. Di�erent architectures or processors can
lead to di�erent round errors due to di�erences in �oating point operations hardware.
Each method can use the result obtained from the others to decrease the e�ect of round
errors.

In the remainder of this section we present two applications implemented for YML:
The matrix vector product is �rst presented and then we present a realization of the
MERAM multi-method for the solving of eigenproblems.
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Figure 8.4: Hybrid method control �ow

8.3.1 Matrix vector product

8.3.1.1 Overview

The matrix vector product is a basic operation in all linear algebra applications. More
speci�cally, this application computes y = Ax + x. It is used almost everywhere and
especially during the projection stage of iterative methods and the construction of Krylov
subspaces. The study of this simple operation is the �rst step toward a distributed Arnoldi
projection and a scalable eigensolver. A �rst evaluation of this method with YML is
given in [49]. This evaluation describes the �rst prototype of YML and the matrix vector
product of dense matrices executed on top of the XtremWeb middleware.

This application triggers really large matrices of a billion-order. In this context, it is
not possible to delegate the work to a single processor and the matrix must be divided
in blocks. Many decompositions exist and the best one depends on the matrix itself.
However, in order to be able to execute this operation on any matrix, we select a decom-
position which does not take into account the speci�city of the matrix. We choose the
same decomposition as for dense matrix vector product presented in [49]. The decompo-
sition consists in splitting the whole matrix in blockCount × blockCount square blocks
of size blockSize. Each block is a matrix itself. The input vector x and result vector y
involved in the product are decomposed in blockCount blocks of blockSize elements.

This application depends on the LAKe library and relies mainly on the matrix mul-
tiplication operator service of LAKe. This class is especially designed to provide matrix
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vector product. It is designed to be specialized for sparse matrices and exposes a read-only
interface for the matrix operand.

In order to study the matrix vector product on a problem of an arbitrary size, we emu-
late a distributed matrix generator by replicating a single matrix block. We also generate
an arbitrary vector x. However, the parameter chosen for the vector and the matrices
has no impact on the performance and involves the same complexities in operations and
memory consumption as a real tuple of matrix A and vector x.

8.3.1.2 Parameters

The matrix vector product application de�nes the following parameters:

• A represents the matrix. The matrix is decomposed in blocks. A block of the
matrix is noted A[i][j] where i is the row index and j is the column index. Each
block of the matrix is of size blockSize × blockSize. The matrix A is composed of
blockCount× blockCount blocks.

• x represents the input vector. It is decomposed in blockCount blocks of size blockSize.
A block is noted x[i].

8.3.1.3 Services

The application depends on the following services which are part of the integration of the
LAKe library with YML.

• MatrixSet: This service is used to create an arbitrary dense matrix or dense vector.
It is used for the creation of the input vector x.

• Product: This service does the operation y = y + Ax. This operation is described
in the section below.

8.3.1.4 Work�ow process

The work�ow process of the matrix vector product application consists in two stages.
The �rst stage generates an arbitrary vector x and initializes the vector y with a copy
of x. This is done in parallel for each block of both vectors (1). The second stage is
composed of a set of product services (2, 3, 4). The rows of the matrix are processed in
parallel. However, within each row, blocks are processed sequentially, in order to prevent
a reduction operation at the end of the computation of each block. A reduction would
require a single service to gather the results of all rows and require a huge storage capacity
on the peer responsible for the reduction of a row. The sequential processing of a row
reduces one step at a time. Figure 8.5 describes the matrix vector product application.

Additional resources for this application are described in appendix A.2.1 and A.3.
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Figure 8.5: Matrix vector product: decomposition

8.3.2 Multiply explicitly restarted Arnoldi method

8.3.2.1 Overview

The explicitly restarted Arnoldi method (ERAM) is an iterative method which computes
a few eigenvalues and eigenvectors of large sparse non-Hermitian matrices. It allows to
compute an approximation of the solution of the large matrix A in a very much smaller
m-dimensional subspace called Krylov subspace. If the accuracy of this approximation
is not satisfactory, the process restarts using another Krylov subspace obtained with the
information provided by the previous one. ERAM makes use of the Arnoldi projection
to create a Krylov subspace K of base B. This projection is the generalization of the
Lanczos method dedicated to the symetric case. A solver for the eigenproblem based on
the Lanczos method has been adapted to YML in [37].

The eigenvalues and eigenvectors are then approximated by those of a matrix H rep-
resenting A in the subspace K. The eigenelements of H can be computed using a classical
QR solver. Algorithm 3 presents the ERAM method. I is the restarting vector initialized
with an arbitrary vector. This last can be composed of randomly computed values, a
vector of the identity matrix, a vector composed of 1, etc. residuals is an array of real
values consisting in the residual norms associated to approximated eigenelements. If any
value in that array is greater than the tol, the method needs to be restarted for another
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Algorithme 3 : Explicitly Restarted Arnoldi Method

Data : A: The matrix of order n
Data : m: Subspace size
Data : tol: The tolerance expected by the user
Data : maxIter: The maximum number of iteration
Result : V : A set of r eigenvectors
Result : v: A set of r eigenvalues
begin

I ←− CreateInitialVector(n);
for it← 1 to maxIter do

I ←− Normalize(I);
H, B ←− ArnoldiProjection(A, I, m);
V , v, residuals←− QRSolver(H, B, r);
if residuals < tol then return V , v;
else I ←− ExplicitRestart(V , v);

end

end

iteration. The explicit restart sub program does a linear combination of the approximated
eigenvectors, or Ritz vectors, in order to produce the initial vector of the next iteration.

The multiply explicitly restarted Arnoldi method (MERAM) is based on k instances
of ERAM. The instances of ERAM work on the same problem (A, r, tol) but they are
initialized with di�erent subspace size mi, i ∈ [1, k]. They can also use di�erent initial
vector generators and restarting strategies. The results Ri of the current iteration are
produced after the execution of the QR solver sub program. They are sent to the other
co-methods ERAM(j) with j 6= i and j ∈ [1, k]. In the mean time ERAM(i) receives the
results from the other ERAM(j). The best results are selected based on their accuracy.
This step is later called reduction. They are then sent to the restarting strategy for each
ERAM independently.

8.3.2.2 Parameters

In this section we present the parameters of the MERAM application de�ned by YML:

• A is the matrix of the problem to solve. The matrix is of size n × n and contains
nnz non null elements. It is stored using a sparse matrix format called CSC also
known as RUA. For our experiments we select matrices from the families AF, BFW,
PDE and RAN of the MatrixMarket online collection.

• r represents the number of eigenelements which are expected by the user. The
method focuses on �nding the r eigenelements of greater modules. When applied
to non Hermitian matrices, eigenelements are always complex values.

• tol is the convergence criterion used to stop the method. The application stops once
the residuals which represent the estimated errors of the solution are smaller than
tol.
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• m[i] represents the size of the subspace for the projections of the ERAM process
i. m[i] is a value in the range r + 1 to n. The smaller it is the faster the iteration
results are obtained. However if m is too small, the subspace might not contain
the eigenelements and the method will not converge. This parameter has a critical
impact on the number of iterations needed to converge. The best value for this
parameter can not be calculated mathematically without solving the problem itself.
We are thus limited to an arbitrary choice.

• I[i] is the initial guess used at application startup for the ERAM process i. I[i] is
a vector used to initiate the projection stage. Several methods exist to initiate the
projection such as arbitrary vector, unit vector, and identity matrix column vectors.

• Reduction is the strategy used to select the best result to be used to restart the
method. It is a reduction operator applied to all available results at a time. We
have used two strategies: the �rst strategy makes a selection among the best results
available taking each eigenelement independently, while the second strategy groups
all results of a method together and selects the best group of eigenelements.

• Restart is the strategy used to create a new initial guess for the next iteration. All
the strategies we tested rely on a linear combination of the ritz vector and eigenvalues
obtained during the last iteration and selected by the reduction strategy. Several
criteria are available. We mostly experimented the simplest strategy, consisting in
combining all vectors using the same contribution.

8.3.2.3 Services

The implementation of this application relies on the LAKe library for all its services. The
applications de�ne the following services:

• Start: Create an initial vector I[i] used for the �rst iteration of each ERAM process.
The vector is also normalized.

• Arnoldi: Compute the Arnoldi projection. This service takes as inputs the matrix
A, the size of a subspace m[i], and an initial vector I[i]. It computes the basis of the
Krilov subspace B[i], a dense matrix of size n, m and an Hessemberg matrix of size
m + 1, m which represents the subspace itself. This projection is currently handled
by a single service on a single peer. In order to allow our application to solve larger
problems, we need to distribute this service in the future.

• Solver: Solve the eigenproblem in the subspace. It takes the basis and the Hessem-
berg matrices produced by the Arnoldi service and computes n eigenelements. If
the accuracy of the solution matches the tolerance value tol given by the user, the
Solver service generates an exception which stops the execution of the work�ow.

• Frobenius: This service computes the frobenius norm of the matrix A this value is
used during the evaluation of the accuracy of the solution obtained by the current
iteration by the Solver service.
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• Reduction: This service is involved during the restarting of each ERAM process.
The restarting of the method is composed of two operations. The �rst operation
consists in selecting the best restarting elements among the information available.
This is the goal of this service. Several strategies to select the information used to
select the restarting elements are used. It is this service which is responsible for the
interaction of an ERAM process with the other co-method of the application.

• Restart: This service is involved in the second step of the restarting of an ERAM
process. It constructs a new initial guess to be used in the next iteration of the
process. It is basically a linear combination based of the Ritz vector produced by
the Solver service. Several strategies can be chosen for the coe�cient used for the
linear combination.

8.3.2.4 Work�ow

Implementing MERAM for YML scienti�c work�ow rests on a set of services implemented
by using the libraries such as LAKe. Figure 8.6 presents the graph of the application
for four processes. The graph depends on two parameters: the maximum number of
iterations and the number of ERAM processes. Data �ow is represented using dot lines.
Control �ow uses solid lines. Services are boxed with solid lines. Each ERAM process is
executed concurrently with the others. Data communication is managed by the work�ow
environment. The application stops as soon as the execution reaches the stop node of the
graph. This happens when all methods have �nished their execution or when a solution
is found by an instance of the QR Solver service.

An important aspect of the solution relies on a shared storage. At the end of the
QR solver service, results are sent to a storage service which gathers results from all
methods. This shared storage is split in k independent slots which can be write and read
concurrently. Each ERAM process is the owner and sole writer of its slot. There is no need
for synchronization mechanism. The shared storage always contains the latest produced
values. The reduction is executed locally by all ERAM processes. Such shared storage can
be implemented in several ways in a work�ow environment. Common solutions include
state-full services such as an FTP server, distributed data repository services or simply
the application storage managed by the work�ow scheduling tool to store application
run-time data.

The Arnoldi service can be implemented using three policies. It can be implemented
as a sequential service and as a parallel service using LAKe or as a parallel sub-graph.
The current implementation uses the sequential service approach due to limitation on the
middleware we are currently using for our experiments. The �rst two policies are provided
by LAKe. The instantiation of the parallel version depends solely on the resource allo-
cated to the service. The third approach allows to handle larger problems on commodity
hardware.

The implementation described above makes only a few assumptions on the underly-
ing run-time environment. This approach rests on a strict separation between data �ow,
control �ow and computation code. This approach is due to the use of work�ow environ-
ments to express arbitrary levels of parallelism. The solution itself can be used in libraries
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Figure 8.6: MERAM application graph

such as LAKe or extended LAKe by de�ning three kinds of elements: data, services and
method framework.

Additional resources for this application are described in appendix A.2.2.

8.4 Conclusion

We presented four applications which demonstrate the genericity of the solution proposed
in YML. The applications chosen are representative of their domain and highlight the
contribution of a work�ow environment to large scale distributed systems. We presented
two non numerical applications: a distributed sort and an image rendering and processing
application. The last two applications are numerical, the �rst one being representative of
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linear algebra problems and more speci�cally of the solving of eigenproblems.
We described numerical methods for the solving of linear algebra problems and in-

troduced hybrid and multi methods for the solving of eigenvalues problems. The last
application we introduced is MERAM. This application is a multi-method for the solving
of large sparse distributed methods for non-Hermitian problems. We extended this method
by proposing a realization on YML which allows to increase the number of collaborating
methods in comparaison with previous solutions proposed in [63].

Finally, we highlighted a few applications which have been implemented using YML
by other researchers from the university of Lille, FRANCE and the university of Tunis,
TUNISIA:

• Block Gauss-Jordan linear system solver.

• Bisection based eigensolver for the symmetric case.

• Lanczos based eigensolver for the symmetric case.

• Several versions of the matrix vector product.



Chapter 9

YML performance evaluation

9.1 Introduction

The evaluation of performance of environments such as YML is di�cult. Indeed, YML is
layered on top of one or several middleware. These are responsible for the management
of a dynamic platform composed of heterogeneous resources. Each peer can join and
leave the system at any time. Moreover, computing resources are shared between many
users and are not necessarly dedicated to the execution of computation associated with
the middleware and thus YML applications. The impact of other applications (local or
managed by the middleware) is almost impossible to measure. Finally, resources are
exploited during their inactivity period which is also di�cult to take into account in the
evaluation process. The de�nition of a methodology for performance evaluation in such
an environment is out of the scope of this thesis.

In this chapter, we present an early evaluation of YML. We illustrate the performance
obtained with YML using both OmniRPC and XtremWeb on two experimental platforms.
We evaluate the performance of YML through the applications presented in the previous
chapter with an emphasis on the distributed sort and MERAM.

The �rst chapter describes the experimental platforms used. We then evaluates YML
performance. Finally, we present detailed results for MERAM applications. The conclu-
sion highlights the aspect that can be improved in YML in order to increase signi�cantly
the performance of YML applications.

9.2 Platforms

We executed YML on two runtime environments. The �rst platform is dedicated to the
scienti�c community. It is a scienti�c tool for the evaluation of large scale experiments
in distributed computing. The second platform is a real-life platform composed of nodes
located in France and Japan and shared with end-users. Unlike the �rst platform, it is a
production platform not dedicated to research.
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9.2.1 GRID 5000 platform

The main experimental platform is GRID 5000 [187]. It is a research tool dedicated to
experimentation on large scale distributed systems. It provides scientists with a platform
which can be tuned and con�gured to match the experiment needs in domains such as
operating system, networking, grid middleware, and applications for large scale architec-
tures. It is driven through a reservation policy where each user is granted a speci�ed
number of processors for a speci�c time slot. The user can then deploy its own environ-
ment: operating system, distributed middleware, software and libraries to support the
execution of scienti�c experiments.

It is composed of nodes located in various universities in France. Each site is connected
to the others using a 1 Gbit/s wan provided by Renater. The platform evolves with
time and it is not as simple to describe as a high performance computer. During our
experiments, we mostly make use of resources located in Orsay (GDX cluster) which are
composed of single or dual processor computers (AMD Opteron family, from 2.0 and 2.6
GHz). Each processor has a single core and the main memory available on each computer
is at least 2GB. We also gather resources from other clusters when the number of resources
available at Orsay are lower than the maximum concurrency level of our applications.

We focused our experiments on GRID 5000 to the OmniRPC middleware. We used ssh
to connect the OmniRPC client to its agent. We used OmniRPC using the direct mode
for all experiments which harnessed less than 90 nodes and the cluster-mode otherwise.
In cluster mode, we used one agent for about �fty computing resources.

9.2.2 Eudil/Tsukuba platform

Unlike GRID 5000, the second platform is not a dedicated tool for the experimentation.
On the opposite, this platform is a real-life environment where regular users use resources
during the day. We make use of the resources available using a cycle stealing policy. It
means that computing resources are used by the middleware when they are idle. Several
criteria can be part of determining whether a host is idle or not. In our deployed grid we
measure idleness based on the cpu usage and assume that resources can contribute to the
middleware whenever the cpu usage is less than 20%. The platform is really dynamic and
the amount of nodes involved in our experiments varies from one experiment to another.
It can also change during the experiment.

The nodes composing the middleware are located both at the university of Tsukuba in
Japan and at the university of Lille in France (more speci�cally at the Eudil engineering
school). The total number of harnessed hosts is about a hundred hosts. The platform
contains more heterogeneous resources in terms of processor model and operating systems.
The resources are based on single and dual processors nodes based on intel celeron and
pentium 4 processors as well as AMD processors. Some nodes also integrate dual core
processors. The amount of memory available on a host varies from 512MB up to 2GB.
The network and available storage vary signi�cantly from one host to another.

On this platform, we deployed both XtremWeb and OmniRPC middleware in order to
be able to compare the performance of the two middleware. We also deployed the YML
worker with and without support for caching of the services binaries.
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9.2.3 YML deployment

YML is component oriented and thus several con�gurations can be used to deploy YML
during an experiment. In order to describe our experimental platform, we also need to
present the layout use for the component involved in the execution of YML.

In order to support the execution of an application, YML mainly uses the following
components: the data repository server and the scheduler. We adopted the simplest
layout: The scheduler and the data repository server are both located on the same node
which is also used to interact with the middleware.

When using OmniRPC, there is no real server for the middleware. The YML scheduler
acts as the master of the system. However, XtremWeb is architectured around a server.
This server is responsible for the management of the platform. Due to deployment issues,
we were not able to experiment using XtremWeb and yml components on distinct nodes.
Despite the important latency of a system such as XtremWeb, we don't think that the
impact of interacting with a distant XtremWeb server will introduce that much latency.
We will detail this aspect when we present the performance of YML.

9.3 YML evaluation

The evaluation of YML begins with the performance of some applications. We do not
take into account the speci�city of applications. We analyse several work�ow processes
based on a set of common matrices and highlight the behavior of YML. The table 9.1
presents a few results gathered from various applications. It shows that YML is able
to process large data sets in a reasonable time. The Image application highlights that
YML is not e�cient when facing applications with really large concurrency. Among the
experimentations presented below the maximum number of tasks executed per minute
is 80 which represents a transfer rate of 320Mbytes per minute on Grid'5000. On the
EUDIL platform the number of tasks executed per minute is around 30 and corresponds
to a transfer rate of 60Mbytes per minute.7

App. Platform Tasks Comms. Concur. Exec. Time Workers
Dsort EUDIL(OmniRPC) 560 832Mb 32 1h 55m 30s 32
DSort EUDIL(OmniRPC)8 1913 2.8Gb 128 47m 46s 89
Image Grid'5000 40000 1.6Gb 40000 7h 40m 14s 129
Image Grid'5000 240 960Mb 240 3m 38s 116

Table 9.1: Performance evaluation of YML

9.4 Applications evaluation

We �rst focus on the performance of YML regardless of the application. In this section
we are going further by focusing on one application at a time. Our analysis takes into

7This section is going to be extended in the �nal version of the document.
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account information speci�c to the studied application.

9.4.1 Distributed sort

The distributed sort work�ow process depends on two parameters. The number of blocks
representing the number of tasks (service execution) and the concurrency. The second
parameter de�nes the size of blocks. It thus determines the amount of data transfered
for each communication. We present results obtained on Grid'5000 as well as the EUDIL
platform using both OmniRPC and XtremWeb.

The table 9 presents the results of the experiments on the Grid'5000 platform using
the OmniRPC back-ends. The worker does not provide any caching mechanism in those
experiments. The most signi�cant result in this table is the last column. It clearly
highlights the e�ect of the size of the blocks on the performance. It also shows that the
performance of applications: Those built upon YML are more e�cient when using small
blocks of data rather than huge ones. This is due to the data repository component which
currently acts as a bottleneck for the whole system.

Size of blocks
blocks/tasks 1000 10000 100000 1000000

16/152 35s 36s 52s 53s
32/560 57s 56s 1m 1s 3m 02s
64/2144 4m 38s 4m 41s 5m 38s 15m 57s
128/8384 50m 38s 52m 10s 54m 19s N/A
256/33152 11h 53m 14s N/A 11h 48m 1s 14h 29m 38s

Table 9.2: Execution times of the distributed sort on Grid'5000 (OmniRPC)

The table 9.3 presents the performance obtained using the EUDIL platform with both
OmniRPC and XtremWeb back-ends. The worker enables the caching of the computing
services on the peers involved in the execution of the application. As shown in this table,
YML application can be executed on di�erent middleware. The exact same services are
used in both cases. We highlight the overhead related to the deployment of computing
services for each service and show the e�ciency of the use of a cache for computing
services. Use of caching on the worker is one of the most promising ways to improve the
performance of YML applications. We also highlight the overhead due to the submission
mechanism of XtremWeb and its client/dispatcher/worker architecture. Despite the fact
that using XtremWeb for managing a platform such as Eudil is easier and more �exible
than using OmniRPC, this is the initial targeted platform for YML and it constitutes the
most signi�cant proof of concept for our environment.

9Missing results will be added for the �nal version.
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Size of blocks
blocks/tasks 1000 10000 100000 1000000
OmniRPC without cache on the worker

32/560 8m 48s 9m 46s 20m 4s 1h 55m 30s
64/2144 34m 16s N/A 47m 10s N/A
128/8384 50m 38s 52m 10s 54m 19s N/A

OmniRPC with cache on the worker
32/560 40s N/A 11m 23s 1h 44m 54s
64/2144 1m 5m 8s 47m 55s 15m 57s
128/8384 2m 33s 20m 12s 54m 19s N/A

XtremWeb with cache on the worker
32/560 39m 18s N/A 39m 35s 2h 9m 19s
64/2144 1h 57m 46s 2h 3m 43s 2h 5m 12s 4h 45m 31s

Table 9.3: Execution times of the distributed sort on the EUDIL Platform (OmniRPC
and XtremWeb)

Matrix name Size NNZ Froebenius norm
ran12000 12000 4800000 10+3

af23560 23560 484256 10+4

pde490000 490000 2447200 10+3

pde1000000 1000000 4996000 10+3

Table 9.4: List of matrices used for experiments

9.4.2 Multiple explicitly restarted Arnoldi method

Asynchronous hybrid methods for linear algebra applications are one of the goals of YML.
Indeed, it provides a rich application context which stresses the system and highlights
many problems such an environment must solve. Nevertheless, they are potentially really
interesting for large scale middleware as they gain from being used in an heterogeneous
environment. They are also fully asynchronous and fault tolerant. Their main drawbacks
are due to the iterative structure of the method. Indeed each iteration requires a set of
results produced in the previous iterations and many components of the method are not
�t for parallelization. In that respect the matrix vector product is a �rst step toward a
parallel version of MERAM using YML.

For our experiments, we selected a set of matrices from the MatrixMarket collection.
The used matrices are summarized in the table 9.4. NNZ corresponds to the number of
non zero elements of the matrix, we also added the Froebenius norm which impacts on
the convergence criteria.

The experiments described in the remainder of this section have been executed using
YML on Grid'5000. Due to the limited concurrency of the method, we make use of
computing resources of the Grid Explorer cluster of Grid'5000 located in Orsay. We
demonstrate the validity of the approach (a) by presenting the feasibility, (b) by decreasing
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the number of iterations needed to converge when the number of co-method increases and
(c) by showing the scalability of the solution in regards of the matrix sizes and of the
number of co-methods used for eigenproblems.

The MERAM method de�nes a set of parameters, the most signi�cant ones are A the
matrix used, n the size of the matrix, r the number of eigenelements expected, m1, ..,mp

the size of the subspaces used for each co-method also noted MERAM (m1, ...,mp). tol
denotes the tolerance expected for the results. Lastly, MERAM requires the selection
of the strategy to create the initial vector(I), the selection of the vectors to form the
restarting vector(Red) and that one de�ning the restarting strategy(Res). The �gure 9.1
illustrates two experiments with the af23560 matrix. On the top, the method converged
in 375 iterations. On the bottom, the method doesn't converge. It is stopped after
�ve hundred iterations. The only di�erence between the two experiments is the number
of wanted eigenelements. The bold curve corresponds to MERAM. An horizontal line
denotes the tolerance or the error allowed on the results. The vertical axis represents the
estimated error of the solution obtained at each iteration. The horizontal axis represents
the number of iterations.

In �gure 9.2, we present two executions of MERAM for the matrix pde490000. The
two executions di�er in the number of involved co-methods. In the execution on the
left, MERAM(10,30,50) requires 98 iterations to converge while MERAM(10, 20, 30, 50)
requires 91 iterations. In other words, the increase in the number of co-methods decreases
the iteration count of the hybrid method. We notice that by making use of YML/LAKe
we are able to overcome the limitation in the number of co-methods composing a hybrid
method.

One of the motivations of YML/LAKe is the scalability issue in regard to the number
of co-methods composing a hybrid one and the size of the problems to be solved. Figure
9.3 illustrates progresses made in that regard. Using YML/LAKe we have been able
to solve eigenproblems with one million-order matrices. Our approach is based onto
the fragmentation in blocks of the matrix of the problem and its distribution during the
projection step of the iterative method. The second scalability issue relates to the number
of co-methods used to solve an eigenproblem. Extended LAKe allows to test the hybrid
methods composed by only a small number of co-methods (up to 3). Using YML/LAKe
we have been able to test e�ortlessly with ten co-methods and it is possible to increase
this number. This is also illustrated in �gure 9.4. In that set of charts we present
the execution of MERAM on the ran12000 matrix. The two upper charts highlight the
number of iterations needed to converge when using 6 co-methods while the two lower
ones describe the result when using 9 co-methods. The horizontal axis of the left charts
represent the number of iterations and the vertical axis represent the estimated error.
The horizontal axis of the right charts represent the time and the vertical axis represent
the time used per iteration. As we can see the number of iterations needed to converge is
slightly smaller when using nine co-methods. However, the time needed to compute the
solution is bigger due to the increased amount of data transfers.
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Figure 9.1: Convergence of MERAM(7,5,10) for the matrix af23560
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Figure 9.2: Convergence of MERAM for matrix 490000 with di�erent numbers of co-
methods
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Figure 9.3: Scalability of the solution: number of co-methods/size of A
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Figure 9.4: Scalabitlity of the solution: number of co-methods on ran12000
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9.5 Conclustion

The experiments presented in this chapter demonstrated that YML is able to help during
the de�nition of applications for large scale distributed systems. The experiments con-
�rmed the interest of the approach used in YML and how YML can hide the complexity
related to the exploitation of such platforms in the real life.

The experiments presented in this chapter highlighted several aspects that could evolve
in order to improve the performance of the system. The results in this chapter show the
feasibility of the approach. Indeed, among the middleware we have chosen, at least one
is dedicated to the exploitation of idle resources connected through Internet. Thus, it is
important to point out that this kind of computer usage is free and can just be considered
as extra resources. It is then realistic to exploit them even not as e�ciently as they could
be in our applications.

A high level approach such as YML naturally comes with a cost. The current version
of YML introduces an important overhead compared to direct use of middleware. We
decided not to measure and discuss this overhead in our performance evaluation. Several
evaluations of the overhead introduced by YML has been given in [37, 101]. They make
use of the OmniRPC back-end. They are accurate because they measure the performance
of two di�erent applications that solve the same problem. Indeed, they both make use
of the master peer for computing simple computations. Nevertheless, the overhead pre-
sented in these documents shows that YML should provide support for local execution
of components using built-in components as described in 6.2 and that improvement is
possible in the execution of services.

YML is an important tool for any application which can be detached from the under-
lying runtime environment. If performance becomes a signi�cant issue, there is plenty of
room for improvements in the following areas of YML:

1. Data management policies: YML lacks a decent data repository. It is currently the
bottleneck of the system and could be improved signi�cantly by introducing caching,
replication, and distribution system based on a solution like Bittorent for example.

2. Planning: Due to its independance with middleware, YML does not integrate any
execution planning tool. It would be really interesting to allow back-ends to analyse
the application graph in order to constitute execution plans. This would allow
optimistic strategies for data placement and direct communication between peers
involved in the system.

3. Worker: The YML worker provides a convenient glue between middleware resources
and YML services. It makes an intensive use of archives to represent data associated
to the execution of a service. A more e�cient solution would consist in using
versioning on the application data store in order to allow workers to retrieve data
one at a time. This would decrease signi�cantly IO on the one hand and also allow
automatic caching by the worker.
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Chapter 10

Conclusion

The development of parallel applications for distributed systems is di�cult. Indeed, the
complexity of runtime environments keeps increasing while the tools to develop appli-
cations are mostly identical. In that respect, two families of runtime environments are
currently evolving in similar ways. Nowadays high performance systems and large scale
distributed systems are composed of an increasing number of heterogeneous and volatile
computing resources. End-users must develop applications which take into account the
dynamicity of these systems, but they have to deal with the lack of standardized pro-
gramming interfaces for grid, global computing and peer to peer systems.

In this thesis, we focused mainly on the modeling and realization of a programming
environment which provides solutions to the aforementioned problems. We �rst de�ned a
model of work�ow environment. It is built upon the notion of components. A component
is responsible for one well speci�ed role. Each component is de�ned in terms of an ab-
stract interface and one or several concrete realizations. The model identi�es three logical
layers responsible for the interaction with end-users, the interaction with middleware and
�nally the management of work�ow processes. We then presented YML, a realization
of this model. YML is a scienti�c work�ow environment dedicated to the creation and
exploitation of large scale distributed systems.

A front-end layer provides three ways to interact with YML components. An IDE
manages the creation of work�ow processes. It provides wizards to assist the user. A web
portal is also provided in order to exploit a YML application. It provides mechanisms to
con�gure or pre-process an execution, monitor the execution of a work�ow and analyse
intermediate and �nal results. Both tools rely on a set of command line tools which are
clients for the component provided by the other layers of YML.

The interaction with middleware is managed by the back-end layer. This layer solves
issues introduced by large scale distributed systems. It de�nes a set of components to
interact with supported middleware. YML provides concrete back-ends for executing
work�ow on top of the OmniRPC and XtremWeb middleware. It also provides two back-
ends used to assist the user during the creation of work�ow applications. Finally it
allows the execution of a YML work�ow to be executed on resources provided by multiple
middleware at the same time. YML federates resources provided by several middleware
in order to support the execution of applications.

A kernel layer connects the other layers together. It is responsible for the work�ow
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management and the services integration. The kernel layer is composed of a collection
of components dedicated to the manipulation of work�ow process de�nitions. In YML,
the process de�nition includes the services used during the computation as well as the
description of the coordination between services. YML work�ow process de�nition is
textual and relies on XML and a dedicated language.

The creation of services involved in the execution process is part of YML. The inte-
gration of services relies on a service generator component. It interacts with two catalogs
used to store the services according to whether they are abstract or concrete. These cat-
alogs are then used to gather information about existing services during the compilation
and the execution (respectively) of work�ows.

YML separates work�ow compilation and scheduling stages. This approach allows the
decomposition of a work�ow environment into independent components, removes the cost
of work�ow analysis from the execution, and also enables planning strategy and a more
detailed analysis of the control �ow thanks to the knowledge of the complete set of tasks
composing a work�ow.

In order to demonstrate the approach, we presented four applications which have been
used to highlight its genericity as well as the performance achieved by the environment.
The �rst two applications are not related to numerical problem solving. They consist
in a distributed sort application and an image synthesis and post-processing application,
both working on data set of arbitrary size. The last two applications are directly related
to the solving of linear algebra problems. We presented a scalable version of a matrix
vector product. This is a critical application used many times during the solving of linear
problems and especially during the projection step used in many iterative methods for
the solving of linear systems and eigenproblems. Our last application, called MERAM, is
an implementation of an hybrid method for the solving of eigenproblems. This method
uses multiple instances of the Arnoldi method collaborating asynchronously.

The performance evaluation allowed us to point out several optimizations which are
needed in order to signi�cantly decrease the execution time of YML work�ow processes.
Indeed, YML is the work of a small number of people. It is still a relatively new software
with a few users. In order to attract more users, several aspects need enhancements. YML
su�ers from a signi�cant overhead due to the current realization of the worker component.
Transparently for applications de�ned using YML, we can improve signi�cantly the per-
formance of the system by adding a cache mechanism to the worker. Alongside with this
�rst improvement, the latency of the system can be decreased by removing the creation
of packs or archives of data before network communications. Those are not needed. They
can be generated on the �y while sending the results back to YML. This last approach
could greatly improve the performance of the system at a small cost.

Despite the increasing performance of networks, compression of communications is
still useful. Indeed the compression can happen once at the time of the creation of the
results of a service. YML does not inspect the content of �les. It is then unneeded to
uncompress this �le on the server side. This approach has the bene�ts of increasing the
ratio computation/communication transparently.

Currently the YML worker is identical from one middleware to another. However, some
middleware and especially GRID middleware could use a worker able to execute several
concrete services without being stopped. Indeed this would allow direct communication



121

between peers as well as data persistency which is not supported by the requirements of
the architecture model used. This approach is unfortunately not really possible for peer
to peer middleware because of the volatility of peers involved.

Thanks to the contribution of new back-end components for Condor and DRMAA,
the integration of middleware could be extended to rely on more middleware features
if available. For example, scheduling strategies are useful once it is possible to assign
resources explicitly. Scheduling strategies can then decide to allocate multiple works to
the same computing device and thus bene�t from data persistence mechanisms.

We think that despite its youth, YML can be used as a support for future research
in topics such as quality of services and grid economy, scheduling, data management and
applications for large scale distributed systems.

With the introduction of multiple core processors, existing software need to evoluate.
The �rst step of this evolution is the optimization of basic linear algebra libraries such as
BLAS and LAPACK. However, the optimization of these libraries is di�cult due to the
lack of adapted programming language, tools, and operating systems. Indeed, currently
existing tools are not adapted anymore: They don't bene�t at all from the really low
communication time needed to share data between processor cores.

In order to e�ciently use these processors as well as high performance systems, new
programming models need to be investigated. Solutions derivated from the UPC language
represent a �rst step in this direction. We also think that a work�ow extension to regular
languages would be worth considering and well adapted to the e�ciency of communication
between the cores composing a processor. It is especially interesting as the granularity
of the work�ow can be mapped to the available core without modifying the logic of the
application.
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Appendix A

Introduction to the creation of

work�ow with YML

The aim of this appendix is to describe the creation of a work�ow application with YML.
It discusses the creation of the resources which compose a work�ow. We present the
de�nition of user data type, abstract and concrete services as well as the de�nition of a
work�ow process. All the resources described in this appendix are based on the application
used in this thesis.

A.1 Adding user de�ned data type

YML can be extended through user de�ned data types. Currently, YML in its version
1.0.6 allows the de�nition of services using the C++ language. A user de�ned data
type consists in a type and a pair of serialization methods. It is needed to add a type
de�nition to the yml namespace. The type de�nition can be a simple type alias to an
existing basic data type, a user de�ned class or an imported one from another namespace
with the using keyword. Data types have to provide at least a public default constructor.
The serialization of the data type to a byte stream is done using two methods named
param_import and param_export which are specialized in any new data type.

Below, we present two examples taken from the distributed sort example and the
image application.

A.1.1 Block of integer de�nition

In the distributed sort we manipulate blocks composed of collections of integers. We de-
cided to represent a collection of integers using the std::vector template of the standard
template library (STL) of the C++ language. The type de�nition of a block of integers
is then really simple as the vector class is responsible for the allocation, deallocation and
meets the requirements of YML.
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#ifndef VECTOR_INTEGER_TYPE_HH
#define VECTOR_INTEGER_TYPE_HH 1
#include " i n t e g e r . type . hh"

4#include <cstd io>
#include <vector>
namespace yml
{
// Type d e f i n i t i o n based on the i n s t a n t i a t i o n o f an STL temp la te .

9typedef std : : vector<in tege r> Vector Intege r ;
// S e r i a l i z a t i o n method f o r input
template<>
bool param_import ( Vecto r Intege r& param , const char∗ f i l ename ) {

FILE∗ data = fopen ( f i l ename , " rb" ) ;
14i f ( data ) {

int count ;
i n t e g e r va lue ;
int s t a tu s = f r ead ( reinterpret_cast<char∗>(&count ) , s izeof (

count ) , 1 , data ) ;
i f ( s t a tu s == 1) {

19int i ;
for ( i = 0 ; i < count ; ++i ) {

s t a tu s = f r ead ( reinterpret_cast<char∗>(&value ) ,
s izeof ( va lue ) , 1 , data ) ;

i f ( s t a tu s == 1) {
param . push_back ( value ) ;

24} else {
f c l o s e ( data ) ;
return fa l se ;

}
}

29} else {
f c l o s e ( data ) ;
return fa l se ;

}
f c l o s e ( data ) ;

34return true ;
}
return fa l se ;

}

39// S e r i a l i z a t i o n func t i on f o r output
template<>
bool param_export ( const Vector Intege r& param , const char∗ f i l ename ) {

FILE∗ data = fopen ( f i l ename , "wb" ) ;
i f ( data ) {

44s i ze_t count = param . s i z e ( ) ;
int s t a tu s ;
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s t a tu s = fw r i t e ( reinterpret_cast<char∗>(&count ) , s izeof ( count
) , 1 , data ) ;

i f ( s t a tu s == 1) {
s i ze_t i ;

49i n t e g e r va lue ;
for ( i = 0 ; i < count ; ++i ) {

value = param [ i ] ;
s t a tu s = fw r i t e ( reinterpret_cast<char∗>(&value ) ,

s izeof ( va lue ) , 1 , data ) ;
i f ( s t a tu s != 1) {

54f c l o s e ( data ) ;
un l ink ( f i l ename ) ;
return fa l se ;

}
}

59f c l o s e ( data ) ;
return true ;

} else {
f c l o s e ( data ) ;
un l ink ( f i l ename ) ;

64return fa l se ;
}
f c l o s e ( data ) ;
return true ;

}
69return fa l se ;

}

} // End o f yml namespace
#endif

Listing A.1: Vector integer type de�nition

The serialization code in the previous listing depends on the C standard library for
IO operations. YML provides an alternate interface which allows to use a more secure
encoding solution based on a set of C++ abstractions. The listing below highlights
the loading of a dense matrix based on the C++ abstraction for IO operations. These
IO mechanisms are available to all user de�ned data type de�nitions. In this interface, a
stream is decorated with a serializer to support typed binary read operation. In this short
example we present only the IO abstraction for input. The same interface is available for
output as well.

// Loading o f the matrix from a f i l e
62in l ine bool RealMatrix : : load ( const char∗ f i l ename ) {

// C++ Abs t rac t i on f o r IO opera t ion
Fi leStream in ( f i l ename , STREAM_READ_ONLY) ;
i f ( in ) {

S e r i a l i z e r reader ( in ) ; // Binary typed IO opera t ion
67reader . readUInt32 (d_rows ) ;
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r eader . readUInt32 ( d_cols ) ;
d_values . r e s i z e (d_rows ∗ d_cols ) ;
for ( s i ze_t i = 0 ; i < d_values . s i z e ( ) ; ++i )

reader . readReal64 ( d_values [ i ] ) ;
72i f ( ! in ) // Check t ha t a l l ope ra t i ons are s u c c e s s f u l l

return fa l se ;
}
return true ;

}
77// In t e g r a t i on wi th the YML s e r v i c e genera tor

template <>
bool param_import ( RealMatrix& param , const char∗ f i l ename ) {

return param . load ( f i l ename ) ;
}

Listing A.2: C++ interface for IO operation

A.1.2 PNG Image type de�nition

In the image application, we exchange image from one service to another using a widely
available format called PNG. It is also an interesting as it provides compression without
loss of information. The listing below contains the de�nition of the data type. It's a
header only de�nition which contains at the same time the de�nition of the PNGImage

class as well as the operations used for the input and output of images in services. We
remove the de�nition of the methods of the class PNGImage for clarity.

#ifndef PNGIMAGE_TYPE_HH
#define PNGIMAGE_TYPE_HH 1

3#include <cs t r i ng >
#include <png . h>
namespace yml
{

// De f i n i t i on o f the not ion o f P i x e l here we use RGB images .
8struct Pixe l

{
unsigned char red ;
unsigned char green ;
unsigned char blue ;

13} ;
// PNG Image c l a s s d e c l a r a t i on
class PNGImage
{
public :

18PNGImage ( ) : d_width (0 ) , d_height (0 ) , d_pixels (0 ) {}
PNGImage ( s i ze_t width , s i ze_t he ight ) : d_width ( width ) , d_height

( he ight ) ,
d_pixels (new Pixe l [ d_width ∗ d_height ] ) {}

~PNGImage ( ) { delete [ ] d_pixels ; }
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PNGImage( const PNGImage & source ) ;
23PNGImage& operator= ( const PNGImage & source ) ;

s i z e_t width ( ) const { return d_width ; }
s i ze_t he ight ( ) const { return d_height ; }
void s e t S i z e ( s i ze_t width , s i ze_t he ight ) ;
void swap (PNGImage & image ) ;

28void s e t ( s i ze_t x , s i ze_t y ,
unsigned char r , unsigned char g , unsigned char b) ;

const Pixe l& operator ( ) ( s i ze_t x , s i ze_t y ) const
{ return d_pixels [ x + d_width ∗ y ] ; }
P ixe l & operator ( ) ( s i ze_t x , s i ze_t y )

33{ return d_pixels [ x + d_width ∗ y ] ; }
const char ∗data ( ) const
{ return reinterpret_cast<const char∗>(d_pixels ) ; }
char ∗data ( )
{ return reinterpret_cast < char ∗>(d_pixels ) ; }

38s i ze_t dataS ize ( ) const
{ return sizeof ( P ixe l ) ∗ d_width ∗ d_height ; }

bool read ( const char ∗path ) ;
bool wr i t e ( const char ∗path ) const ;

43private :
s i z e_t d_width ;
s i ze_t d_height ;
P ixe l ∗d_pixels ;

} ;
227// In t e g r a t i on wi th the C++ s e r v i c e s genera tor methods :

// param_import i s used f o r read ing a png image
template <>
bool param_import (PNGImage& param , const char∗ f i l ename )
{

232return param . read ( f i l ename ) ;
}
// param_export i s used f o r wr i t i n g a png image
template <>
bool param_export ( const PNGImage& param , const char∗ f i l ename )

237{
return param . wr i t e ( f i l ename ) ;

}
}
#endif

Listing A.3: PNG Image type de�nition
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A.2 Service de�nitions

In this section, we present the de�nitions of abstract and concrete services. In our exam-
ples, we always associate an abstract and a corresponding concrete service de�nition. A
service requires the de�nition of two XML documents. An abstract service de�nition is
used to specify how the service interacts with the outside world while a concrete service
de�nition is used to describe the computation.

A.2.1 Matrix vector product service

The matrix vector product is an example extracted from the matrix vector application.
It consists in the execution of the expression y = y + Ax where y and x are vectors and
A is a sparse matrix. The service relies on the matmul_operator class provided by the
LAKe library. The listing below contains the de�nition of the abstract service:

<?xml version=" 1 .0 "?>
<component name="pmv_product" type=" abs t r a c t ">

<de s c r i p t i o n>
Pa r a l l e l matrix vec to r product y = y + Ax

</ de s c r i p t i o n>
<params>

<param name="y" type="LakeMatrix" mode=" inout " />
<param name="A" type="LakeCSC" mode=" in " />
<param name="x" type="LakeMatrix" mode=" in " />

</params>
</component>

Listing A.4: Matrix vector product abstract service de�nition

This service de�nes three parameters. Vectors are represented using LakeMatrix while
the sparse matrix is represented using LakeCSC. All these data type are user-de�ned and
based on the LAKe library classes. Vectors are represented using a one column or one line
matrix in LAKe. The mode is used to specify whether the parameter is in input, output
or both for the service.

The concrete service depends on the LAKe and the zlib libraries. The implementation
begins by checking the inputs of the services. In this service, both A and x are required
while y is optional. The computation begins line 15. It begins with the creation of
a temporary vector to hold the result of the product y′ = Ax. A LakeCSC matrix
provides the apply method which executes the matrix vector product. Finally, we sum
the intermediate results. Thanks to the LAKe library the implementation of the service
is short.
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<?xml version=" 1 .0 "?>
<component type=" impl " ab s t r a c t="pmv_product" name="pmv_productImpl"

>
<impl lang="CXX" l i b s=" lake  z l i b ">

4<header />
<source><! [CDATA[

i f ( ! x_param . e x i s t s ( ) | | ! A_param . e x i s t s ( ) )
l ogEr ro r (" parameter x or A are miss ing ") ;

9
i f ( ! y_param . e x i s t s ( ) )
{

y . c r e a t e ( x . shape ( ) ) ;
s e t (y , 0 . 0 ) ;

14}
out ( ) << " Sta r t i ng computation" << s t d : : e n d l ;
yml: :LakeMatrix ytmp(A. nrow ( ) , 1) ;
A. apply (x , ytmp) ;
out ( ) << "Matrix operator app l i ed " << s t d : : e n d l ;

19// do a sum of x , y
out ( ) << x . shape ( ) << s t d : : e n d l ;
out ( ) << ytmp . shape ( ) << s t d : : e n d l ;
out ( ) << y . shape ( ) << s t d : : e n d l ;
f o r ( i n t i = 1 ; i <= x . nrow ( ) ; ++i )

24y ( i , 1) += ytmp( i , 1) + x( i , 1) ;

out ( ) << "y = y + Ax f i n i s h e d " << s t d : : e n d l ;
] ]></ source>

<f o o t e r />
29</ impl>

</component>

Listing A.5: Matrix vector product concrete service de�nition

A.2.2 MERAM reduction service

The reduction service is used to select the best set of vectors, generated by the other
services. This service illustrates the manipulation of collections from a service written in
C++. The reduction service is large in size thus we present only a subset of its imple-
mentation focusing on the interaction with collections. In the abstract service de�nition,
a collection parameter is described in the same way as a regular parameter except that
it has an extra attribute named 'collection' with the value yes. By default, this optional
attribute is set to no.
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<?xml version=" 1 .0 "?>
<yml−query l o g i n="admin" password="1010">

<component name="MeramReduce" type=" abs t r a c t " d e s c r i p t i o n="Reduce 
operator  used in  the  s e l e c t i o n  o f  the  r e s t a r t i n g  e lements ">

<param name=" va lue s " type="LakeMatrix" mode="out" />
<param name=" vec to r s " type="LakeMatrix" mode="out" />
<param name=" r e s i d u a l s " type="LakeMatrix" mode="out" />
<param name="n" type=" i n t e g e r " mode=" in " />
<param name=" r " type=" i n t e g e r " mode=" in " />
<param name=" va l s " type="LakeMatrix" mode=" in " c o l l e c t i o n=

"yes " />
<param name="vecs " type="LakeMatrix" mode=" in " c o l l e c t i o n=

"yes " />
<param name=" r e s " type="LakeMatrix" mode=" in " c o l l e c t i o n=

"yes " />
<param name="mode" type=" s t r i n g " mode=" in " d e s c r i p t i o n

="Reduction mode: component ,  p roce s s " />
<param name=" e id " type=" i n t e g e r " mode=" in " />

</component>
</yml−query>

Listing A.6: MERAM Reduction abstract service de�nition

The processing of a collection is described in the next listing. Collections are homoge-
neous: They cannot be composed of di�erent types of resources. A collection is modeled
using a tree. Each node can be associated to a resource except the root node. In order to
access a particular resource one needs �rst to access the corresponding node and then can
either get or set the resource. Each resource/node is identi�ed uniquely using a sequence
of integers which represents a path in the tree. If the layout of the collection is unknown,
it is possible to iterate through the nodes of the collection using iterators similar to the
standard template library iterators.

The �rst part of the listing consists in a set of type aliases used to manipulate the
collection. In this service, we are interested in selecting the best restarting information
from the multiple ERAM processes collaborating to �nd the solution of an eigenproblem.
In order to select this information we �rst navigate through the three collections which
represent the restarting information generated by each ERAM process ei. In each col-
lection, the element produced by ei is located at the position i in the collection. Due to
asynchronous algorithm, it is possible that the information from an ERAM process be
only partially available. The second part of the code is used to collect the valid indices
common to the three collections. The last excerpt of this listing uses CollectionHelper
to navigate through a collection. This class provides a secure interface for the manipu-
lation of a collection and allows the use of the range notation to access elements of the
collection directly. The reduction operation is illustrated in this part. It works similarly
to an accumulator or the selection of the maximum value in a sequence. vectors, values
and residuals contains the temporary results. These results are updated each time the
solution provided by an element of the collection is more interesting according to the
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reduction strategy used.
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<?xml version=" 1 .0 "?>
<component name="MeramReduceImpl" type=" impl "

ab s t r a c t="MeramReduce">
<impl lang="CXX" l i b s=" lake ">

5<header><! [CDATA[
#inc lude <Lake . hh>
#inc lude <Matrix . hh>
#inc lude <vector>
// De f i n i t i o n o f type a l i a s f o r compactness

10typede f yml: :LakeMatrix Mat ;
// A c o l l e c t i o n i s s im i l a r to a t r e e .
// Each node i s i d e n t i f i e d by a sequence o f i n t e g e r s
// A vecto r o f i n t e g e r s can be used to i d e n t i f y
// any i n t e r n a l node or l e a f un ique ly .

15typede f s t d : : v e c t o r <yml : :Co l l e c t i on Index> Ind i c e s ;
// A c o l l e c t i o n o f l ake matr i ce s
typede f ym l : :Co l l e c t i on <yml: :LakeMatrix> Matr ixCo l l e c t i on ;
// A node in a c o l l e c t i o n o f l ake matrix
typede f yml : :Co l l ec t ionNode<yml: :LakeMatrix> Matr ixCol lect ionNode ;

20// Resources are a s s o c i a t ed to nodes which are
// a s s o c i a t ed to e x i s t i n g data .
typede f yml : :Co l l e c t i onResource<yml: :LakeMatrix>

Matr ixCo l l ec t ionResource ;
// I t e r a t o r s are used to nav igate through the nodes o f a c o l l e c t i o n .
typede f yml : :Co l l e c t i onNode I t e r a to r <yml: :LakeMatrix>

Matr ixCo l l e c t i onNode I t e ra to r ;
25//−−−−−−−−−−−−−−−−−−−−− end o f f i r s t part −−−−−−−−−−−−−−−−−−−

// F i r s t we nav igate through the nodes o f the c o l l e c t i o n in
// order to c o l l e c t the l i s t o f nodes a s s o c i a t ed to a r e s ou r c e

I nd i c e s i d s ;
vecs . getRoot ( )−>ge t I nd i c e s ( i d s ) ;

62out ( ) << "Non checked i d s a r e : " ;
f o r ( s i ze_t i = 0 ; i < id s . s i z e ( ) ; ++i )

out ( ) << " " << id s [ i ] ;
out ( ) << s t d : : e n d l ;
f o r ( s i ze_t i = 0 ; i < id s . s i z e ( ) ; ++i )

67{
// Check con s i s t ency : Remove a l l e n t r i e s
// that are not pre sent in a l l c o l l e c t i o n s
i f ( va l s . getRoot ( )−>getChi ld ( i d s [ i ] ) == 0 | |

r e s . getRoot ( )−>getChi ld ( i d s [ i ] ) == 0) {
72// We must d e l e t e i

f o r ( s i ze_t j = i ; j < id s . s i z e ( ) − 1 ; ++j )
i d s [ j ] = id s [ j +1] ;

i d s . pop_back ( ) ;
−− i ;

77}
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}
// −−−−−−−−−−−−−−−−− end o f second part −−−−−−−−−−−−−−−−−−−

// At t h i s stage , eve ryth ing has been f i l t e r e d
// We i n i t i a l i z e the r e s u l t s with the value o f the f i r s t

92// element o f the three c o l l e c t i o n s .
ym l : :Co l l e c t i onHe lpe r <yml: :LakeMatrix> helperVec ( vecs ) ;
ym l : :Co l l e c t i onHe lpe r <yml: :LakeMatrix> he lperVal ( va l s ) ;
ym l : :Co l l e c t i onHe lpe r <yml: :LakeMatrix> helperRes ( r e s ) ;
i f ( ! he lperVec [ i d s . back ( ) ] . get ( v e c t o r s ) ) {

97logEr ro r ("Unable to import data f o r e i g env e c t o r s ") ;
e r r o r ( ) ;

}
i f ( ! he lperVal [ i d s . back ( ) ] . get ( va lue s ) ) {

l ogEr ro r ("Unable to import data f o r e i g enva lu e s ") ;
102e r r o r ( ) ;

}
i f ( ! he lperRes [ i d s . back ( ) ] . get ( r e s i d u a l s ) ) {

l ogEr ro r ("Unable to import data f o r r e s i d u a l s ") ;
e r r o r ( ) ;

107}
i d s . pop_back ( ) ;
// Apply the s e l e c t i o n s t r a t e gy by i t e r a t i n g through
// the e lements o f each c o l l e c t i o n .
const I n d i c e s : : c o n s t_ i t e r a t o r end = id s . end ( ) ;

112f o r ( I n d i c e s : : c o n s t_ i t e r a t o r i t e r = id s . begin ( ) ;
i t e r != end ; ++i t e r ) {

Mat currentRes ;
Mat currentVal ;
Mat currentVec ;

117i f ( he lperVec [∗ i t e r ] . get ( currentVec ) &&
helperVal [∗ i t e r ] . get ( currentVal ) &&
helperRes [∗ i t e r ] . get ( currentRes ) ) {

// Strategy based on component wise s e l e c t i o n
f o r ( ym l : : i n t e g e r i = 1 ; i <= r ; ++i ) {

122i f ( r e s i d u a l s (1 , i ) > currentRes (1 , i ) ) {
// Update the f i n a l r e s u l t s with the cur r ent va lues .

r e s i d u a l s (1 , i ) = currentRes (1 , i ) ;
va lue s ( i , 1) = currentVal ( i , 1) ;
va lue s ( i , 2) = currentVal ( i , 2) ;

127f o r ( ym l : : i n t e g e r j = 1 ; j <= n ; ++j )
ve c t o r s ( j , i ) = currentVec ( j , i ) ;

}
}

}
132}

Listing A.7: MERAM Reduction concrete service de�nition
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A.3 Work�ow de�nitions

The last kind of resources which is needed to de�ne an application using YML is the
work�ow process. Like the de�nition of services, a work�ow process is described using an
XML document. A work�ow process is very similar to a service de�nition: The beginning
consists in a set of parameters in the exact same way as for an abstract service. The rest
of the de�nition contains the graph of tasks expressed using the YML graph description
language. Several work�ow processes have been presented in 8.

We conclude this appendix with a small excerpt issued from the matrix vector product
application. It describes the parallel section corresponding to the product. It illustrates
the most common construction of the language: the parallel and sequential loops, the
synchronization events wait and notify and the execution of services introduced by the
keyword compute. The work�ow is described in 8.3.1.4. 1In the excerpt below, the A
matrix is square and split in square blocks. The event evtX are noti�ed in another section
(not present in the listing) of the work�ow of the application executed in parallel.

par ( i := 1 ; blockCount ) do
wait ( evtX [ i ] ) ;
seq ( j := 1 ; blockCount ) do

wait ( evtX [ j ] ) ;
# check t h i s f i r s t
compute pmv_product ( y [ i ] , A[ i ] [ j ] , x [ j ] ) ;

enddo
no t i f y ( evtY [ i ] ) ;

enddo

Listing A.8: Matrix vector product



Résumé

Les intergiciels à grande échelle proposent des solutions aux problèmes d'accès à distance, de
sécurité, d'hétérogénéité et de tolérance aux fautes des participants au système. L'exploitation
de ces intergiciels par des utilisateurs �naux reste très di�cile pour des applications réelles.
Les environnements de développements et d'exécution pour ces systèmes sont très rares voire
inexistants.

Nous présentons YML, un environnement de calcul scienti�que à base de work�ow pour les
systèmes distribués. L'objectif principal de YML est de rendre l'utilisation d'intergiciel trans-
parente à l'utilisateur. Il s'agit d'une couche logicielle située entre l'intergiciel déployé et les
applications. YML est composé de trois parties: les interfaces utilisateurs, le noyau et l'interface
avec les intergiciels. Le noyau de YML comprend un langage de work�ow utilisé pour décrire
l'application ainsi qu'un compilateur et un ordonnanceur de tâches. Le noyau possède également
un service d'intégration de systèmes permettant d'intégrer les bibliothèques scienti�ques en tant
que service de calcul.

Nous validons l'approche choisie et présentons une évaluation préliminaire de la performance
d'YML par le biais de quatre applications issue de trois domaines distincts. Nous focalisons
l'analyse sur deux cas d'études : une application de tri et une méthode d'algèbre linéaire de
résolution des problèmes de valeurs propre appliquée aux matrices creuses non Hermitienne.
Nous présentons une méthode hybride asynchrone de résolution appelée MERAM et analysons
les résultats obtenus en utilisant la bibliothèque LAKe (Linear Algebra Kernel) intégrée au sein
d'YML en tant que services.

Abstract

Distributed large-scale middleware aim at solving problems such as remote access, security,
heterogeneity, and fault tolerance. Using these middleware with real life applications is still
complex and not easy for end-users. The adapted programming and execution environments
built upon middleware services still lack.

We present YML, a scienti�c work�ow environment for the development and execution of
parallel applications on distributed architectures. It aims at making the use of such architectures
transparent and independent of middleware. It is a software layer located on top of middleware
of a widely distributed system. It consists of three overlapping parts: the front-end as the
user interface, the kernel and the back-end as the interface with middleware. The core of YML
includes a work�ow language used to express and run the application and provides a compiler and
a scheduler for it. The kernel supports also a service integration system o�ering the possibility
to integrate the scienti�c libraries as services.

We validate our approach and evaluate the performance of the implementation through four

applications from three di�erent domains. We emphasize our analysis on two applications: a

distributed sort and a linear algebra solver for eigenproblems applied to non Hermitian sparse

matrices. We present an asynchronous implementation of MERAM, a hybrid iterative method

and discuss the results obtained using the Linear Algebra Kernel library as a service integrated

in YML.




